# YOLOv5 🚀 by Ultralytics, GPL-3.0 license """ Validate a trained YOLOv5 model accuracy on a custom dataset Usage: $ python path/to/val.py --data coco128.yaml --weights yolov5s.pt --img 640 """ import argparse import json import os import sys from pathlib import Path from threading import Thread import numpy as np import torch from tqdm import tqdm FILE = Path(__file__).absolute() sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path from models.experimental import attempt_load from utils.callbacks import Callbacks from utils.datasets import create_dataloader from utils.general import ( box_iou, check_dataset, check_img_size, check_requirements, check_suffix, check_yaml, coco80_to_coco91_class, colorstr, increment_path, non_max_suppression, scale_coords, set_logging, xywh2xyxy, xyxy2xywh, ) from utils.metrics import ConfusionMatrix, ap_per_class from utils.plots import output_to_target, plot_images, plot_study_txt from utils.torch_utils import select_device, time_sync def save_one_txt(predn, save_conf, shape, file): # Save one txt result gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh for *xyxy, conf, cls in predn.tolist(): xywh = ( (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() ) # normalized xywh line = ( (cls, *xywh, conf) if save_conf else (cls, *xywh) ) # label format with open(file, "a") as f: f.write(("%g " * len(line)).rstrip() % line + "\n") def save_one_json(predn, jdict, path, class_map): # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236} image_id = int(path.stem) if path.stem.isnumeric() else path.stem box = xyxy2xywh(predn[:, :4]) # xywh box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner for p, b in zip(predn.tolist(), box.tolist()): jdict.append( { "image_id": image_id, "category_id": class_map[int(p[5])], "bbox": [round(x, 3) for x in b], "score": round(p[4], 5), } ) def process_batch(detections, labels, iouv): """ Return correct predictions matrix. Both sets of boxes are in (x1, y1, x2, y2) format. Arguments: detections (Array[N, 6]), x1, y1, x2, y2, conf, class labels (Array[M, 5]), class, x1, y1, x2, y2 Returns: correct (Array[N, 10]), for 10 IoU levels """ correct = torch.zeros( detections.shape[0], iouv.shape[0], dtype=torch.bool, device=iouv.device, ) iou = box_iou(labels[:, 1:], detections[:, :4]) x = torch.where( (iou >= iouv[0]) & (labels[:, 0:1] == detections[:, 5]) ) # IoU above threshold and classes match if x[0].shape[0]: matches = ( torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1) .cpu() .numpy() ) # [label, detection, iou] if x[0].shape[0] > 1: matches = matches[matches[:, 2].argsort()[::-1]] matches = matches[np.unique(matches[:, 1], return_index=True)[1]] # matches = matches[matches[:, 2].argsort()[::-1]] matches = matches[np.unique(matches[:, 0], return_index=True)[1]] matches = torch.Tensor(matches).to(iouv.device) correct[matches[:, 1].long()] = matches[:, 2:3] >= iouv return correct @torch.no_grad() def run( data, weights=None, # model.pt path(s) batch_size=32, # batch size imgsz=640, # inference size (pixels) conf_thres=0.001, # confidence threshold iou_thres=0.6, # NMS IoU threshold task="val", # train, val, test, speed or study device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu single_cls=False, # treat as single-class dataset augment=False, # augmented inference verbose=False, # verbose output save_txt=False, # save results to *.txt save_hybrid=False, # save label+prediction hybrid results to *.txt save_conf=False, # save confidences in --save-txt labels save_json=False, # save a COCO-JSON results file project="runs/val", # save to project/name name="exp", # save to project/name exist_ok=False, # existing project/name ok, do not increment half=True, # use FP16 half-precision inference model=None, dataloader=None, save_dir=Path(""), plots=True, callbacks=Callbacks(), compute_loss=None, ): # Initialize/load model and set device training = model is not None if training: # called by train.py device = next(model.parameters()).device # get model device else: # called directly device = select_device(device, batch_size=batch_size) # Directories save_dir = increment_path( Path(project) / name, exist_ok=exist_ok ) # increment run (save_dir / "labels" if save_txt else save_dir).mkdir( parents=True, exist_ok=True ) # make dir # Load model check_suffix(weights, ".pt") model = attempt_load(weights, map_location=device) # load FP32 model gs = max(int(model.stride.max()), 32) # grid size (max stride) imgsz = check_img_size(imgsz, s=gs) # check image size # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99 # if device.type != 'cpu' and torch.cuda.device_count() > 1: # model = nn.DataParallel(model) # Data data = check_dataset(data) # check # Half half &= device.type != "cpu" # half precision only supported on CUDA if half: model.half() # Configure model.eval() is_coco = isinstance(data.get("val"), str) and data["val"].endswith( "coco/val2017.txt" ) # COCO dataset nc = 1 if single_cls else int(data["nc"]) # number of classes iouv = torch.linspace(0.5, 0.95, 10).to( device ) # iou vector for mAP@0.5:0.95 niou = iouv.numel() # Dataloader if not training: if device.type != "cpu": model( torch.zeros(1, 3, imgsz, imgsz) .to(device) .type_as(next(model.parameters())) ) # run once task = ( task if task in ("train", "val", "test") else "val" ) # path to train/val/test images dataloader = create_dataloader( data[task], imgsz, batch_size, gs, single_cls, pad=0.5, rect=True, prefix=colorstr(f"{task}: "), )[0] seen = 0 confusion_matrix = ConfusionMatrix(nc=nc) names = { k: v for k, v in enumerate( model.names if hasattr(model, "names") else model.module.names ) } class_map = coco80_to_coco91_class() if is_coco else list(range(1000)) s = ("%20s" + "%11s" * 6) % ( "Class", "Images", "Labels", "P", "R", "mAP@.5", "mAP@.5:.95", ) dt, p, r, f1, mp, mr, map50, map = ( [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ) loss = torch.zeros(3, device=device) jdict, stats, ap, ap_class = [], [], [], [] for batch_i, (img, targets, paths, shapes) in enumerate( tqdm(dataloader, desc=s) ): t1 = time_sync() img = img.to(device, non_blocking=True) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 targets = targets.to(device) nb, _, height, width = img.shape # batch size, channels, height, width t2 = time_sync() dt[0] += t2 - t1 # Run model out, train_out = model( img, augment=augment ) # inference and training outputs dt[1] += time_sync() - t2 # Compute loss if compute_loss: loss += compute_loss([x.float() for x in train_out], targets)[ 1 ] # box, obj, cls # Run NMS targets[:, 2:] *= torch.Tensor([width, height, width, height]).to( device ) # to pixels lb = ( [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] ) # for autolabelling t3 = time_sync() out = non_max_suppression( out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls, ) dt[2] += time_sync() - t3 # Statistics per image for si, pred in enumerate(out): labels = targets[targets[:, 0] == si, 1:] nl = len(labels) tcls = labels[:, 0].tolist() if nl else [] # target class path, shape = Path(paths[si]), shapes[si][0] seen += 1 if len(pred) == 0: if nl: stats.append( ( torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls, ) ) continue # Predictions if single_cls: pred[:, 5] = 0 predn = pred.clone() scale_coords( img[si].shape[1:], predn[:, :4], shape, shapes[si][1] ) # native-space pred # Evaluate if nl: tbox = xywh2xyxy(labels[:, 1:5]) # target boxes scale_coords( img[si].shape[1:], tbox, shape, shapes[si][1] ) # native-space labels labelsn = torch.cat( (labels[:, 0:1], tbox), 1 ) # native-space labels correct = process_batch(predn, labelsn, iouv) if plots: confusion_matrix.process_batch(predn, labelsn) else: correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool) stats.append( (correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls) ) # (correct, conf, pcls, tcls) # Save/log if save_txt: save_one_txt( predn, save_conf, shape, file=save_dir / "labels" / (path.stem + ".txt"), ) if save_json: save_one_json( predn, jdict, path, class_map ) # append to COCO-JSON dictionary callbacks.run( "on_val_image_end", pred, predn, path, names, img[si] ) # Plot images if plots and batch_i < 3: f = save_dir / f"val_batch{batch_i}_labels.jpg" # labels Thread( target=plot_images, args=(img, targets, paths, f, names), daemon=True, ).start() f = save_dir / f"val_batch{batch_i}_pred.jpg" # predictions Thread( target=plot_images, args=(img, output_to_target(out), paths, f, names), daemon=True, ).start() # Compute statistics stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy if len(stats) and stats[0].any(): p, r, ap, f1, ap_class = ap_per_class( *stats, plot=plots, save_dir=save_dir, names=names ) ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95 mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean() nt = np.bincount( stats[3].astype(np.int64), minlength=nc ) # number of targets per class else: nt = torch.zeros(1) # Print results pf = "%20s" + "%11i" * 2 + "%11.3g" * 4 # print format print(pf % ("all", seen, nt.sum(), mp, mr, map50, map)) # Print results per class if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats): for i, c in enumerate(ap_class): print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i])) # Print speeds t = tuple(x / seen * 1e3 for x in dt) # speeds per image if not training: shape = (batch_size, 3, imgsz, imgsz) print( f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}" % t ) # Plots if plots: confusion_matrix.plot(save_dir=save_dir, names=list(names.values())) callbacks.run("on_val_end") # Save JSON if save_json and len(jdict): w = ( Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else "" ) # weights anno_json = str( Path(data.get("path", "../coco")) / "annotations/instances_val2017.json" ) # annotations json pred_json = str(save_dir / f"{w}_predictions.json") # predictions json print(f"\nEvaluating pycocotools mAP... saving {pred_json}...") with open(pred_json, "w") as f: json.dump(jdict, f) try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb check_requirements(["pycocotools"]) from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval anno = COCO(anno_json) # init annotations api pred = anno.loadRes(pred_json) # init predictions api eval = COCOeval(anno, pred, "bbox") if is_coco: eval.params.imgIds = [ int(Path(x).stem) for x in dataloader.dataset.img_files ] # image IDs to evaluate eval.evaluate() eval.accumulate() eval.summarize() map, map50 = eval.stats[ :2 ] # update results (mAP@0.5:0.95, mAP@0.5) except Exception as e: print(f"pycocotools unable to run: {e}") # Return results model.float() # for training if not training: s = ( f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else "" ) print(f"Results saved to {colorstr('bold', save_dir)}{s}") maps = np.zeros(nc) + map for i, c in enumerate(ap_class): maps[c] = ap[i] return ( (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t, ) def parse_opt(): parser = argparse.ArgumentParser(prog="val.py") parser.add_argument( "--data", type=str, default="data/coco128.yaml", help="dataset.yaml path", ) parser.add_argument( "--weights", nargs="+", type=str, default="yolov5s.pt", help="model.pt path(s)", ) parser.add_argument( "--batch-size", type=int, default=32, help="batch size" ) parser.add_argument( "--imgsz", "--img", "--img-size", type=int, default=640, help="inference size (pixels)", ) parser.add_argument( "--conf-thres", type=float, default=0.001, help="confidence threshold" ) parser.add_argument( "--iou-thres", type=float, default=0.6, help="NMS IoU threshold" ) parser.add_argument( "--task", default="val", help="train, val, test, speed or study" ) parser.add_argument( "--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu" ) parser.add_argument( "--single-cls", action="store_true", help="treat as single-class dataset", ) parser.add_argument( "--augment", action="store_true", help="augmented inference" ) parser.add_argument( "--verbose", action="store_true", help="report mAP by class" ) parser.add_argument( "--save-txt", action="store_true", help="save results to *.txt" ) parser.add_argument( "--save-hybrid", action="store_true", help="save label+prediction hybrid results to *.txt", ) parser.add_argument( "--save-conf", action="store_true", help="save confidences in --save-txt labels", ) parser.add_argument( "--save-json", action="store_true", help="save a COCO-JSON results file", ) parser.add_argument( "--project", default="runs/val", help="save to project/name" ) parser.add_argument("--name", default="exp", help="save to project/name") parser.add_argument( "--exist-ok", action="store_true", help="existing project/name ok, do not increment", ) parser.add_argument( "--half", action="store_true", help="use FP16 half-precision inference" ) opt = parser.parse_args() opt.save_json |= opt.data.endswith("coco.yaml") opt.save_txt |= opt.save_hybrid opt.data = check_yaml(opt.data) # check YAML return opt def main(opt): set_logging() print( colorstr("val: ") + ", ".join(f"{k}={v}" for k, v in vars(opt).items()) ) check_requirements( requirements=FILE.parent / "requirements.txt", exclude=("tensorboard", "thop"), ) if opt.task in ("train", "val", "test"): # run normally run(**vars(opt)) elif opt.task == "speed": # speed benchmarks for w in ( opt.weights if isinstance(opt.weights, list) else [opt.weights] ): run( opt.data, weights=w, batch_size=opt.batch_size, imgsz=opt.imgsz, conf_thres=0.25, iou_thres=0.45, save_json=False, plots=False, ) elif opt.task == "study": # run over a range of settings and save/plot # python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5s.pt yolov5m.pt yolov5l.pt yolov5x.pt x = list(range(256, 1536 + 128, 128)) # x axis (image sizes) for w in ( opt.weights if isinstance(opt.weights, list) else [opt.weights] ): f = f"study_{Path(opt.data).stem}_{Path(w).stem}.txt" # filename to save to y = [] # y axis for i in x: # img-size print(f"\nRunning {f} point {i}...") r, _, t = run( opt.data, weights=w, batch_size=opt.batch_size, imgsz=i, conf_thres=opt.conf_thres, iou_thres=opt.iou_thres, save_json=opt.save_json, plots=False, ) y.append(r + t) # results and times np.savetxt(f, y, fmt="%10.4g") # save os.system("zip -r study.zip study_*.txt") plot_study_txt(x=x) # plot if __name__ == "__main__": opt = parse_opt() main(opt)