SakibRumu
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,29 +1,26 @@
|
|
1 |
import gradio as gr
|
2 |
-
import torch
|
3 |
import cv2
|
|
|
4 |
import numpy as np
|
|
|
5 |
from PIL import Image
|
6 |
-
from paddleocr import PaddleOCR # Import PaddleOCR
|
7 |
from ultralytics import YOLO
|
|
|
8 |
|
9 |
-
# Load model
|
10 |
model = YOLO("/home/user/app/best.pt")
|
11 |
|
12 |
# Label map
|
13 |
label_map = {0: "Analog", 1: "Digital", 2: "Non-LP"}
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
|
18 |
-
def
|
19 |
-
# Resize to YOLO input shape
|
20 |
input_img = cv2.resize(frame, (640, 640))
|
21 |
results = model(input_img)[0]
|
22 |
detections = results.boxes.data.cpu().numpy()
|
23 |
|
24 |
-
extracted_texts = []
|
25 |
-
confidences = []
|
26 |
-
|
27 |
for det in detections:
|
28 |
if len(det) < 6:
|
29 |
continue
|
@@ -33,54 +30,73 @@ def process_frame(frame):
|
|
33 |
label = label_map.get(int(cls), "Unknown")
|
34 |
percent = f"{conf * 100:.2f}%"
|
35 |
|
36 |
-
# Draw box and label
|
37 |
cv2.rectangle(input_img, (x1, y1), (x2, y2), (255, 0, 0), 2)
|
38 |
cv2.putText(input_img, f"{label}: {percent}", (x1, y1 - 10),
|
39 |
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
|
40 |
|
41 |
-
# OCR
|
42 |
-
cropped = frame[y1:y2, x1:x2]
|
43 |
if cropped.size > 0:
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
# Convert to PIL
|
51 |
-
annotated = cv2.cvtColor(input_img, cv2.COLOR_BGR2RGB)
|
52 |
-
pil_img = Image.fromarray(annotated)
|
53 |
-
|
54 |
-
return pil_img, "\n".join(extracted_texts), ", ".join(confidences)
|
55 |
|
|
|
56 |
|
57 |
def process_input(input_file):
|
58 |
file_path = input_file.name
|
|
|
59 |
|
60 |
-
if
|
61 |
cap = cv2.VideoCapture(file_path)
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
cap.release()
|
64 |
-
|
65 |
-
|
|
|
|
|
66 |
else:
|
|
|
67 |
frame = cv2.imread(file_path)
|
68 |
if frame is None:
|
69 |
return None, "Invalid image", ""
|
70 |
|
71 |
-
|
|
|
|
|
72 |
|
73 |
|
74 |
interface = gr.Interface(
|
75 |
fn=process_input,
|
76 |
inputs=gr.File(type="filepath", label="Upload Image or Video"),
|
77 |
outputs=[
|
78 |
-
gr.Image(type="pil", label="
|
79 |
gr.Textbox(label="Detected Text (Bangla)"),
|
80 |
gr.Textbox(label="Confidence (%)")
|
81 |
],
|
82 |
-
title="
|
83 |
-
description="Upload an image or video. Detects license plates and extracts Bangla text using
|
84 |
)
|
85 |
|
86 |
interface.launch()
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import cv2
|
3 |
+
import easyocr
|
4 |
import numpy as np
|
5 |
+
import os
|
6 |
from PIL import Image
|
|
|
7 |
from ultralytics import YOLO
|
8 |
+
from datetime import datetime
|
9 |
|
10 |
+
# Load YOLO model
|
11 |
model = YOLO("/home/user/app/best.pt")
|
12 |
|
13 |
# Label map
|
14 |
label_map = {0: "Analog", 1: "Digital", 2: "Non-LP"}
|
15 |
|
16 |
+
# EasyOCR Bengali
|
17 |
+
reader = easyocr.Reader(['bn'])
|
18 |
|
19 |
+
def annotate_frame(frame):
|
|
|
20 |
input_img = cv2.resize(frame, (640, 640))
|
21 |
results = model(input_img)[0]
|
22 |
detections = results.boxes.data.cpu().numpy()
|
23 |
|
|
|
|
|
|
|
24 |
for det in detections:
|
25 |
if len(det) < 6:
|
26 |
continue
|
|
|
30 |
label = label_map.get(int(cls), "Unknown")
|
31 |
percent = f"{conf * 100:.2f}%"
|
32 |
|
33 |
+
# Draw box and label
|
34 |
cv2.rectangle(input_img, (x1, y1), (x2, y2), (255, 0, 0), 2)
|
35 |
cv2.putText(input_img, f"{label}: {percent}", (x1, y1 - 10),
|
36 |
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
|
37 |
|
38 |
+
# OCR
|
39 |
+
cropped = frame[y1:y2, x1:x2]
|
40 |
if cropped.size > 0:
|
41 |
+
ocr_result = reader.readtext(cropped)
|
42 |
+
for i, item in enumerate(ocr_result):
|
43 |
+
text = item[1].strip()
|
44 |
+
conf = item[2]
|
45 |
+
cv2.putText(input_img, text, (x1, y2 + 20 + i*25),
|
46 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 255), 2)
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
return cv2.cvtColor(input_img, cv2.COLOR_BGR2RGB)
|
49 |
|
50 |
def process_input(input_file):
|
51 |
file_path = input_file.name
|
52 |
+
ext = os.path.splitext(file_path)[-1].lower()
|
53 |
|
54 |
+
if ext in ['.mp4', '.avi', '.mov']:
|
55 |
cap = cv2.VideoCapture(file_path)
|
56 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
57 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
58 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
59 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
60 |
+
|
61 |
+
# Output path
|
62 |
+
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
|
63 |
+
output_path = f"annotated_{timestamp}.mp4"
|
64 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (640, 640))
|
65 |
+
|
66 |
+
while cap.isOpened():
|
67 |
+
ret, frame = cap.read()
|
68 |
+
if not ret:
|
69 |
+
break
|
70 |
+
annotated = annotate_frame(frame)
|
71 |
+
annotated_resized = cv2.resize(annotated, (640, 640))
|
72 |
+
out.write(cv2.cvtColor(annotated_resized, cv2.COLOR_RGB2BGR))
|
73 |
+
|
74 |
cap.release()
|
75 |
+
out.release()
|
76 |
+
|
77 |
+
return output_path, "", ""
|
78 |
+
|
79 |
else:
|
80 |
+
# Image case
|
81 |
frame = cv2.imread(file_path)
|
82 |
if frame is None:
|
83 |
return None, "Invalid image", ""
|
84 |
|
85 |
+
annotated = annotate_frame(frame)
|
86 |
+
pil_img = Image.fromarray(annotated)
|
87 |
+
return pil_img, "", ""
|
88 |
|
89 |
|
90 |
interface = gr.Interface(
|
91 |
fn=process_input,
|
92 |
inputs=gr.File(type="filepath", label="Upload Image or Video"),
|
93 |
outputs=[
|
94 |
+
gr.Video(label="Output Video or Image") | gr.Image(type="pil", label="Output"),
|
95 |
gr.Textbox(label="Detected Text (Bangla)"),
|
96 |
gr.Textbox(label="Confidence (%)")
|
97 |
],
|
98 |
+
title="YOLOv5 License Plate Detector (Bangla OCR)",
|
99 |
+
description="Upload an image or video. Detects license plates and extracts Bangla text using EasyOCR."
|
100 |
)
|
101 |
|
102 |
interface.launch()
|