# coding=utf-8 # Copyright 2023 Microsoft Research & University of Wisconsin-Madison and the HuggingFace Inc. team. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This script includes codes copied directly from https://huggingface.co/spaces/TIGER-Lab/Mantis """ Llava model configuration""" # from ...configuration_utils import PretrainedConfig # from ...utils import logging # from ..auto import CONFIG_MAPPING from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging from transformers.models.auto import CONFIG_MAPPING logger = logging.get_logger(__name__) LLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP = { "llava-hf/llava-v1.5-7b": "https://huggingface.co/llava-hf/llava-v1.5-7b/resolve/main/config.json", } class LlavaConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`LlavaForConditionalGeneration`]. It is used to instantiate an Llava model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Llava-9B. e.g. [llava-hf/llava-9b](https://huggingface.co/llava-hf/llava-9b) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vision_config (`LlavaVisionConfig`, *optional*): Custom vision config or dict text_config (`Union[AutoConfig, dict]`, *optional*): The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`. ignore_index (`int`, *optional*, defaults to -100): The ignore index for the loss function. image_token_index (`int`, *optional*, defaults to 32000): The image token index to encode the image prompt. projector_hidden_act (`str`, *optional*, defaults to `"gelu"`): The activation function used by the multimodal projector. vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`): The feature selection strategy used to select the vision feature from the CLIP backbone. vision_feature_layer (`int`, *optional*, defaults to -2): The index of the layer to select the vision feature. vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the Llava model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`~LlavaForConditionalGeneration`] Example: ```python >>> from transformers import LlavaForConditionalGeneration, LlavaConfig, CLIPVisionConfig, LlamaConfig >>> # Initializing a CLIP-vision config >>> vision_config = CLIPVisionConfig() >>> # Initializing a Llama config >>> text_config = LlamaConfig() >>> # Initializing a Llava llava-1.5-7b style configuration >>> configuration = LlavaConfig(vision_config, text_config) >>> # Initializing a model from the llava-1.5-7b style configuration >>> model = LlavaForConditionalGeneration(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "llava" is_composition = False def __init__( self, vision_config=None, text_config=None, ignore_index=-100, image_token_index=32000, projector_hidden_act="gelu", vision_feature_select_strategy="default", vision_feature_layer=-2, vocab_size=32000, **kwargs, ): self.ignore_index = ignore_index self.image_token_index = image_token_index self.projector_hidden_act = projector_hidden_act self.vision_feature_select_strategy = vision_feature_select_strategy self.vision_feature_layer = vision_feature_layer self.vocab_size = vocab_size self.vision_config = vision_config if isinstance(self.vision_config, dict): vision_config["model_type"] = ( vision_config["model_type"] if "model_type" in vision_config else "clip_vision_model" ) self.vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config) elif vision_config is None: self.vision_config = CONFIG_MAPPING["clip_vision_model"]( intermediate_size=4096, hidden_size=1024, patch_size=14, image_size=336, num_hidden_layers=24, num_attention_heads=16, vocab_size=32000, projection_dim=768, ) self.vocab_size = self.vocab_size self.text_config = text_config if isinstance(self.text_config, dict): text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama" self.text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config) self.vocab_size = self.text_config.vocab_size elif text_config is None: self.text_config = CONFIG_MAPPING["llama"]() super().__init__(**kwargs)