Spaces:
Runtime error
Runtime error
File size: 1,388 Bytes
0a075d8 f5f8fa9 0a075d8 9b1e81f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import torch
from transformers import ViTImageProcessor, AutoFeatureExtractor, AutoModelForImageClassification
import gradio as gr
image_processor = ViTImageProcessor.from_pretrained("google/vit-base-patch16-224")
extractor = AutoFeatureExtractor.from_pretrained("saved_model_files")
model = AutoModelForImageClassification.from_pretrained("saved_model_files")
labels = ['angular_leaf_spot', 'bean_rust', 'healthy']
def classify(image):
features = image_processor(image, return_tensors='pt')
logits = model(features["pixel_values"])[-1]
probability = torch.nn.functional.softmax(logits, dim=-1)
probs = probability[0].detach().numpy()
confidences = {label: float(probs[i]) for i, label in enumerate(labels)}
print(confidences)
return confidences
theme = gr.themes.Soft(
primary_hue="green",
secondary_hue="green",
neutral_hue="green",
).set(
block_background_fill_dark='*body_background_fill',
button_border_width='*block_label_border_width',
button_border_width_dark='*checkbox_label_border_width'
)
with gr.Blocks(theme=theme) as demo:
inference = gr.Interface(fn=classify, inputs="image", outputs="label",
title="Plant leaves Classification",
description="Classify the leaves by uploading image",
examples=["images/1.png","images/2.png", "images/3.png"])
demo.launch() |