SahilCarterr commited on
Commit
8718841
·
verified ·
1 Parent(s): eeaeec0

Upload 59 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +3 -0
  2. segment-anything/content/segment-anything/.flake8 +7 -0
  3. segment-anything/content/segment-anything/.gitignore +42 -0
  4. segment-anything/content/segment-anything/CODE_OF_CONDUCT.md +80 -0
  5. segment-anything/content/segment-anything/CONTRIBUTING.md +31 -0
  6. segment-anything/content/segment-anything/LICENSE +201 -0
  7. segment-anything/content/segment-anything/README.md +171 -0
  8. segment-anything/content/segment-anything/assets/masks1.png +3 -0
  9. segment-anything/content/segment-anything/assets/masks2.jpg +0 -0
  10. segment-anything/content/segment-anything/assets/minidemo.gif +3 -0
  11. segment-anything/content/segment-anything/assets/model_diagram.png +0 -0
  12. segment-anything/content/segment-anything/assets/notebook1.png +0 -0
  13. segment-anything/content/segment-anything/assets/notebook2.png +3 -0
  14. segment-anything/content/segment-anything/demo/README.md +126 -0
  15. segment-anything/content/segment-anything/demo/configs/webpack/common.js +84 -0
  16. segment-anything/content/segment-anything/demo/configs/webpack/dev.js +25 -0
  17. segment-anything/content/segment-anything/demo/configs/webpack/prod.js +22 -0
  18. segment-anything/content/segment-anything/demo/package.json +62 -0
  19. segment-anything/content/segment-anything/demo/postcss.config.js +10 -0
  20. segment-anything/content/segment-anything/demo/src/App.tsx +130 -0
  21. segment-anything/content/segment-anything/demo/src/assets/data/dogs.jpg +0 -0
  22. segment-anything/content/segment-anything/demo/src/assets/index.html +18 -0
  23. segment-anything/content/segment-anything/demo/src/assets/scss/App.scss +3 -0
  24. segment-anything/content/segment-anything/demo/src/components/Stage.tsx +49 -0
  25. segment-anything/content/segment-anything/demo/src/components/Tool.tsx +73 -0
  26. segment-anything/content/segment-anything/demo/src/components/helpers/Interfaces.tsx +29 -0
  27. segment-anything/content/segment-anything/demo/src/components/helpers/maskUtils.tsx +47 -0
  28. segment-anything/content/segment-anything/demo/src/components/helpers/onnxModelAPI.tsx +71 -0
  29. segment-anything/content/segment-anything/demo/src/components/helpers/scaleHelper.tsx +18 -0
  30. segment-anything/content/segment-anything/demo/src/components/hooks/context.tsx +31 -0
  31. segment-anything/content/segment-anything/demo/src/components/hooks/createContext.tsx +27 -0
  32. segment-anything/content/segment-anything/demo/src/index.tsx +17 -0
  33. segment-anything/content/segment-anything/demo/tailwind.config.js +12 -0
  34. segment-anything/content/segment-anything/demo/tsconfig.json +24 -0
  35. segment-anything/content/segment-anything/linter.sh +32 -0
  36. segment-anything/content/segment-anything/notebooks/automatic_mask_generator_example.ipynb +0 -0
  37. segment-anything/content/segment-anything/notebooks/images/dog.jpg +0 -0
  38. segment-anything/content/segment-anything/notebooks/images/groceries.jpg +0 -0
  39. segment-anything/content/segment-anything/notebooks/images/truck.jpg +0 -0
  40. segment-anything/content/segment-anything/notebooks/onnx_model_example.ipynb +774 -0
  41. segment-anything/content/segment-anything/notebooks/predictor_example.ipynb +0 -0
  42. segment-anything/content/segment-anything/scripts/amg.py +238 -0
  43. segment-anything/content/segment-anything/scripts/export_onnx_model.py +201 -0
  44. segment-anything/content/segment-anything/segment_anything/__init__.py +15 -0
  45. segment-anything/content/segment-anything/segment_anything/automatic_mask_generator.py +372 -0
  46. segment-anything/content/segment-anything/segment_anything/build_sam.py +107 -0
  47. segment-anything/content/segment-anything/segment_anything/modeling/__init__.py +11 -0
  48. segment-anything/content/segment-anything/segment_anything/modeling/common.py +43 -0
  49. segment-anything/content/segment-anything/segment_anything/modeling/image_encoder.py +395 -0
  50. segment-anything/content/segment-anything/segment_anything/modeling/mask_decoder.py +176 -0
.gitattributes CHANGED
@@ -36,3 +36,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
36
  ControlNetInpaint/output/baseline_grid.png filter=lfs diff=lfs merge=lfs -text
37
  ControlNetInpaint/output/canny_cheeseburger_grid.png filter=lfs diff=lfs merge=lfs -text
38
  ControlNetInpaint/output/canny_cheeseburger.png filter=lfs diff=lfs merge=lfs -text
 
 
 
 
36
  ControlNetInpaint/output/baseline_grid.png filter=lfs diff=lfs merge=lfs -text
37
  ControlNetInpaint/output/canny_cheeseburger_grid.png filter=lfs diff=lfs merge=lfs -text
38
  ControlNetInpaint/output/canny_cheeseburger.png filter=lfs diff=lfs merge=lfs -text
39
+ segment-anything/content/segment-anything/assets/masks1.png filter=lfs diff=lfs merge=lfs -text
40
+ segment-anything/content/segment-anything/assets/minidemo.gif filter=lfs diff=lfs merge=lfs -text
41
+ segment-anything/content/segment-anything/assets/notebook2.png filter=lfs diff=lfs merge=lfs -text
segment-anything/content/segment-anything/.flake8 ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ [flake8]
2
+ ignore = W503, E203, E221, C901, C408, E741, C407, B017, F811, C101, EXE001, EXE002
3
+ max-line-length = 100
4
+ max-complexity = 18
5
+ select = B,C,E,F,W,T4,B9
6
+ per-file-ignores =
7
+ **/__init__.py:F401,F403,E402
segment-anything/content/segment-anything/.gitignore ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .nfs*
2
+
3
+ # compilation and distribution
4
+ __pycache__
5
+ _ext
6
+ *.pyc
7
+ *.pyd
8
+ *.so
9
+ *.dll
10
+ *.egg-info/
11
+ build/
12
+ dist/
13
+ wheels/
14
+
15
+ # pytorch/python/numpy formats
16
+ *.pth
17
+ *.pkl
18
+ *.npy
19
+ *.ts
20
+ model_ts*.txt
21
+
22
+ # onnx models
23
+ *.onnx
24
+
25
+ # ipython/jupyter notebooks
26
+ **/.ipynb_checkpoints/
27
+
28
+ # Editor temporaries
29
+ *.swn
30
+ *.swo
31
+ *.swp
32
+ *~
33
+
34
+ # editor settings
35
+ .idea
36
+ .vscode
37
+ _darcs
38
+
39
+ # demo
40
+ **/node_modules
41
+ yarn.lock
42
+ package-lock.json
segment-anything/content/segment-anything/CODE_OF_CONDUCT.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Code of Conduct
2
+
3
+ ## Our Pledge
4
+
5
+ In the interest of fostering an open and welcoming environment, we as
6
+ contributors and maintainers pledge to make participation in our project and
7
+ our community a harassment-free experience for everyone, regardless of age, body
8
+ size, disability, ethnicity, sex characteristics, gender identity and expression,
9
+ level of experience, education, socio-economic status, nationality, personal
10
+ appearance, race, religion, or sexual identity and orientation.
11
+
12
+ ## Our Standards
13
+
14
+ Examples of behavior that contributes to creating a positive environment
15
+ include:
16
+
17
+ * Using welcoming and inclusive language
18
+ * Being respectful of differing viewpoints and experiences
19
+ * Gracefully accepting constructive criticism
20
+ * Focusing on what is best for the community
21
+ * Showing empathy towards other community members
22
+
23
+ Examples of unacceptable behavior by participants include:
24
+
25
+ * The use of sexualized language or imagery and unwelcome sexual attention or
26
+ advances
27
+ * Trolling, insulting/derogatory comments, and personal or political attacks
28
+ * Public or private harassment
29
+ * Publishing others' private information, such as a physical or electronic
30
+ address, without explicit permission
31
+ * Other conduct which could reasonably be considered inappropriate in a
32
+ professional setting
33
+
34
+ ## Our Responsibilities
35
+
36
+ Project maintainers are responsible for clarifying the standards of acceptable
37
+ behavior and are expected to take appropriate and fair corrective action in
38
+ response to any instances of unacceptable behavior.
39
+
40
+ Project maintainers have the right and responsibility to remove, edit, or
41
+ reject comments, commits, code, wiki edits, issues, and other contributions
42
+ that are not aligned to this Code of Conduct, or to ban temporarily or
43
+ permanently any contributor for other behaviors that they deem inappropriate,
44
+ threatening, offensive, or harmful.
45
+
46
+ ## Scope
47
+
48
+ This Code of Conduct applies within all project spaces, and it also applies when
49
+ an individual is representing the project or its community in public spaces.
50
+ Examples of representing a project or community include using an official
51
+ project e-mail address, posting via an official social media account, or acting
52
+ as an appointed representative at an online or offline event. Representation of
53
+ a project may be further defined and clarified by project maintainers.
54
+
55
+ This Code of Conduct also applies outside the project spaces when there is a
56
+ reasonable belief that an individual's behavior may have a negative impact on
57
+ the project or its community.
58
+
59
+ ## Enforcement
60
+
61
+ Instances of abusive, harassing, or otherwise unacceptable behavior may be
62
+ reported by contacting the project team at <[email protected]>. All
63
+ complaints will be reviewed and investigated and will result in a response that
64
+ is deemed necessary and appropriate to the circumstances. The project team is
65
+ obligated to maintain confidentiality with regard to the reporter of an incident.
66
+ Further details of specific enforcement policies may be posted separately.
67
+
68
+ Project maintainers who do not follow or enforce the Code of Conduct in good
69
+ faith may face temporary or permanent repercussions as determined by other
70
+ members of the project's leadership.
71
+
72
+ ## Attribution
73
+
74
+ This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
75
+ available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
76
+
77
+ [homepage]: https://www.contributor-covenant.org
78
+
79
+ For answers to common questions about this code of conduct, see
80
+ https://www.contributor-covenant.org/faq
segment-anything/content/segment-anything/CONTRIBUTING.md ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Contributing to segment-anything
2
+ We want to make contributing to this project as easy and transparent as
3
+ possible.
4
+
5
+ ## Pull Requests
6
+ We actively welcome your pull requests.
7
+
8
+ 1. Fork the repo and create your branch from `main`.
9
+ 2. If you've added code that should be tested, add tests.
10
+ 3. If you've changed APIs, update the documentation.
11
+ 4. Ensure the test suite passes.
12
+ 5. Make sure your code lints, using the `linter.sh` script in the project's root directory. Linting requires `black==23.*`, `isort==5.12.0`, `flake8`, and `mypy`.
13
+ 6. If you haven't already, complete the Contributor License Agreement ("CLA").
14
+
15
+ ## Contributor License Agreement ("CLA")
16
+ In order to accept your pull request, we need you to submit a CLA. You only need
17
+ to do this once to work on any of Facebook's open source projects.
18
+
19
+ Complete your CLA here: <https://code.facebook.com/cla>
20
+
21
+ ## Issues
22
+ We use GitHub issues to track public bugs. Please ensure your description is
23
+ clear and has sufficient instructions to be able to reproduce the issue.
24
+
25
+ Facebook has a [bounty program](https://www.facebook.com/whitehat/) for the safe
26
+ disclosure of security bugs. In those cases, please go through the process
27
+ outlined on that page and do not file a public issue.
28
+
29
+ ## License
30
+ By contributing to segment-anything, you agree that your contributions will be licensed
31
+ under the LICENSE file in the root directory of this source tree.
segment-anything/content/segment-anything/LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
segment-anything/content/segment-anything/README.md ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Segment Anything
2
+
3
+ **[Meta AI Research, FAIR](https://ai.facebook.com/research/)**
4
+
5
+ [Alexander Kirillov](https://alexander-kirillov.github.io/), [Eric Mintun](https://ericmintun.github.io/), [Nikhila Ravi](https://nikhilaravi.com/), [Hanzi Mao](https://hanzimao.me/), Chloe Rolland, Laura Gustafson, [Tete Xiao](https://tetexiao.com), [Spencer Whitehead](https://www.spencerwhitehead.com/), Alex Berg, Wan-Yen Lo, [Piotr Dollar](https://pdollar.github.io/), [Ross Girshick](https://www.rossgirshick.info/)
6
+
7
+ [[`Paper`](https://ai.facebook.com/research/publications/segment-anything/)] [[`Project`](https://segment-anything.com/)] [[`Demo`](https://segment-anything.com/demo)] [[`Dataset`](https://segment-anything.com/dataset/index.html)] [[`Blog`](https://ai.facebook.com/blog/segment-anything-foundation-model-image-segmentation/)] [[`BibTeX`](#citing-segment-anything)]
8
+
9
+ ![SAM design](assets/model_diagram.png?raw=true)
10
+
11
+ The **Segment Anything Model (SAM)** produces high quality object masks from input prompts such as points or boxes, and it can be used to generate masks for all objects in an image. It has been trained on a [dataset](https://segment-anything.com/dataset/index.html) of 11 million images and 1.1 billion masks, and has strong zero-shot performance on a variety of segmentation tasks.
12
+
13
+ <p float="left">
14
+ <img src="assets/masks1.png?raw=true" width="37.25%" />
15
+ <img src="assets/masks2.jpg?raw=true" width="61.5%" />
16
+ </p>
17
+
18
+ ## Installation
19
+
20
+ The code requires `python>=3.8`, as well as `pytorch>=1.7` and `torchvision>=0.8`. Please follow the instructions [here](https://pytorch.org/get-started/locally/) to install both PyTorch and TorchVision dependencies. Installing both PyTorch and TorchVision with CUDA support is strongly recommended.
21
+
22
+ Install Segment Anything:
23
+
24
+ ```
25
+ pip install git+https://github.com/facebookresearch/segment-anything.git
26
+ ```
27
+
28
+ or clone the repository locally and install with
29
+
30
+ ```
31
+ git clone [email protected]:facebookresearch/segment-anything.git
32
+ cd segment-anything; pip install -e .
33
+ ```
34
+
35
+ The following optional dependencies are necessary for mask post-processing, saving masks in COCO format, the example notebooks, and exporting the model in ONNX format. `jupyter` is also required to run the example notebooks.
36
+
37
+ ```
38
+ pip install opencv-python pycocotools matplotlib onnxruntime onnx
39
+ ```
40
+
41
+ ## <a name="GettingStarted"></a>Getting Started
42
+
43
+ First download a [model checkpoint](#model-checkpoints). Then the model can be used in just a few lines to get masks from a given prompt:
44
+
45
+ ```
46
+ from segment_anything import SamPredictor, sam_model_registry
47
+ sam = sam_model_registry["<model_type>"](checkpoint="<path/to/checkpoint>")
48
+ predictor = SamPredictor(sam)
49
+ predictor.set_image(<your_image>)
50
+ masks, _, _ = predictor.predict(<input_prompts>)
51
+ ```
52
+
53
+ or generate masks for an entire image:
54
+
55
+ ```
56
+ from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
57
+ sam = sam_model_registry["<model_type>"](checkpoint="<path/to/checkpoint>")
58
+ mask_generator = SamAutomaticMaskGenerator(sam)
59
+ masks = mask_generator.generate(<your_image>)
60
+ ```
61
+
62
+ Additionally, masks can be generated for images from the command line:
63
+
64
+ ```
65
+ python scripts/amg.py --checkpoint <path/to/checkpoint> --model-type <model_type> --input <image_or_folder> --output <path/to/output>
66
+ ```
67
+
68
+ See the examples notebooks on [using SAM with prompts](/notebooks/predictor_example.ipynb) and [automatically generating masks](/notebooks/automatic_mask_generator_example.ipynb) for more details.
69
+
70
+ <p float="left">
71
+ <img src="assets/notebook1.png?raw=true" width="49.1%" />
72
+ <img src="assets/notebook2.png?raw=true" width="48.9%" />
73
+ </p>
74
+
75
+ ## ONNX Export
76
+
77
+ SAM's lightweight mask decoder can be exported to ONNX format so that it can be run in any environment that supports ONNX runtime, such as in-browser as showcased in the [demo](https://segment-anything.com/demo). Export the model with
78
+
79
+ ```
80
+ python scripts/export_onnx_model.py --checkpoint <path/to/checkpoint> --model-type <model_type> --output <path/to/output>
81
+ ```
82
+
83
+ See the [example notebook](https://github.com/facebookresearch/segment-anything/blob/main/notebooks/onnx_model_example.ipynb) for details on how to combine image preprocessing via SAM's backbone with mask prediction using the ONNX model. It is recommended to use the latest stable version of PyTorch for ONNX export.
84
+
85
+ ### Web demo
86
+
87
+ The `demo/` folder has a simple one page React app which shows how to run mask prediction with the exported ONNX model in a web browser with multithreading. Please see [`demo/README.md`](https://github.com/facebookresearch/segment-anything/blob/main/demo/README.md) for more details.
88
+
89
+ ## <a name="Models"></a>Model Checkpoints
90
+
91
+ Three model versions of the model are available with different backbone sizes. These models can be instantiated by running
92
+
93
+ ```
94
+ from segment_anything import sam_model_registry
95
+ sam = sam_model_registry["<model_type>"](checkpoint="<path/to/checkpoint>")
96
+ ```
97
+
98
+ Click the links below to download the checkpoint for the corresponding model type.
99
+
100
+ - **`default` or `vit_h`: [ViT-H SAM model.](https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth)**
101
+ - `vit_l`: [ViT-L SAM model.](https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth)
102
+ - `vit_b`: [ViT-B SAM model.](https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth)
103
+
104
+ ## Dataset
105
+
106
+ See [here](https://ai.facebook.com/datasets/segment-anything/) for an overview of the datastet. The dataset can be downloaded [here](https://ai.facebook.com/datasets/segment-anything-downloads/). By downloading the datasets you agree that you have read and accepted the terms of the SA-1B Dataset Research License.
107
+
108
+ We save masks per image as a json file. It can be loaded as a dictionary in python in the below format.
109
+
110
+ ```python
111
+ {
112
+ "image" : image_info,
113
+ "annotations" : [annotation],
114
+ }
115
+
116
+ image_info {
117
+ "image_id" : int, # Image id
118
+ "width" : int, # Image width
119
+ "height" : int, # Image height
120
+ "file_name" : str, # Image filename
121
+ }
122
+
123
+ annotation {
124
+ "id" : int, # Annotation id
125
+ "segmentation" : dict, # Mask saved in COCO RLE format.
126
+ "bbox" : [x, y, w, h], # The box around the mask, in XYWH format
127
+ "area" : int, # The area in pixels of the mask
128
+ "predicted_iou" : float, # The model's own prediction of the mask's quality
129
+ "stability_score" : float, # A measure of the mask's quality
130
+ "crop_box" : [x, y, w, h], # The crop of the image used to generate the mask, in XYWH format
131
+ "point_coords" : [[x, y]], # The point coordinates input to the model to generate the mask
132
+ }
133
+ ```
134
+
135
+ Image ids can be found in sa_images_ids.txt which can be downloaded using the above [link](https://ai.facebook.com/datasets/segment-anything-downloads/) as well.
136
+
137
+ To decode a mask in COCO RLE format into binary:
138
+
139
+ ```
140
+ from pycocotools import mask as mask_utils
141
+ mask = mask_utils.decode(annotation["segmentation"])
142
+ ```
143
+
144
+ See [here](https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/mask.py) for more instructions to manipulate masks stored in RLE format.
145
+
146
+ ## License
147
+
148
+ The model is licensed under the [Apache 2.0 license](LICENSE).
149
+
150
+ ## Contributing
151
+
152
+ See [contributing](CONTRIBUTING.md) and the [code of conduct](CODE_OF_CONDUCT.md).
153
+
154
+ ## Contributors
155
+
156
+ The Segment Anything project was made possible with the help of many contributors (alphabetical):
157
+
158
+ Aaron Adcock, Vaibhav Aggarwal, Morteza Behrooz, Cheng-Yang Fu, Ashley Gabriel, Ahuva Goldstand, Allen Goodman, Sumanth Gurram, Jiabo Hu, Somya Jain, Devansh Kukreja, Robert Kuo, Joshua Lane, Yanghao Li, Lilian Luong, Jitendra Malik, Mallika Malhotra, William Ngan, Omkar Parkhi, Nikhil Raina, Dirk Rowe, Neil Sejoor, Vanessa Stark, Bala Varadarajan, Bram Wasti, Zachary Winstrom
159
+
160
+ ## Citing Segment Anything
161
+
162
+ If you use SAM or SA-1B in your research, please use the following BibTeX entry.
163
+
164
+ ```
165
+ @article{kirillov2023segany,
166
+ title={Segment Anything},
167
+ author={Kirillov, Alexander and Mintun, Eric and Ravi, Nikhila and Mao, Hanzi and Rolland, Chloe and Gustafson, Laura and Xiao, Tete and Whitehead, Spencer and Berg, Alexander C. and Lo, Wan-Yen and Doll{\'a}r, Piotr and Girshick, Ross},
168
+ journal={arXiv:2304.02643},
169
+ year={2023}
170
+ }
171
+ ```
segment-anything/content/segment-anything/assets/masks1.png ADDED

Git LFS Details

  • SHA256: 094650248317c2b41ca0279d402253a8d1ae3801f8809e69480561dddd7d9f64
  • Pointer size: 132 Bytes
  • Size of remote file: 3.7 MB
segment-anything/content/segment-anything/assets/masks2.jpg ADDED
segment-anything/content/segment-anything/assets/minidemo.gif ADDED

Git LFS Details

  • SHA256: 44ab93e0b59551a3c649cc8a38eb9760545285110f515673c5e7d1e85354125c
  • Pointer size: 132 Bytes
  • Size of remote file: 2.02 MB
segment-anything/content/segment-anything/assets/model_diagram.png ADDED
segment-anything/content/segment-anything/assets/notebook1.png ADDED
segment-anything/content/segment-anything/assets/notebook2.png ADDED

Git LFS Details

  • SHA256: bdffadfdddee81d090ec130566eae7de6de0c6d6b2be85974860327c5d860fcc
  • Pointer size: 132 Bytes
  • Size of remote file: 1.22 MB
segment-anything/content/segment-anything/demo/README.md ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Segment Anything Simple Web demo
2
+
3
+ This **front-end only** React based web demo shows how to load a fixed image and corresponding `.npy` file of the SAM image embedding, and run the SAM ONNX model in the browser using Web Assembly with mulithreading enabled by `SharedArrayBuffer`, Web Worker, and SIMD128.
4
+
5
+ <img src="https://github.com/facebookresearch/segment-anything/raw/main/assets/minidemo.gif" width="500"/>
6
+
7
+ ## Run the app
8
+
9
+ Install Yarn
10
+
11
+ ```
12
+ npm install --g yarn
13
+ ```
14
+
15
+ Build and run:
16
+
17
+ ```
18
+ yarn && yarn start
19
+ ```
20
+
21
+ Navigate to [`http://localhost:8081/`](http://localhost:8081/)
22
+
23
+ Move your cursor around to see the mask prediction update in real time.
24
+
25
+ ## Export the image embedding
26
+
27
+ In the [ONNX Model Example notebook](https://github.com/facebookresearch/segment-anything/blob/main/notebooks/onnx_model_example.ipynb) upload the image of your choice and generate and save corresponding embedding.
28
+
29
+ Initialize the predictor:
30
+
31
+ ```python
32
+ checkpoint = "sam_vit_h_4b8939.pth"
33
+ model_type = "vit_h"
34
+ sam = sam_model_registry[model_type](checkpoint=checkpoint)
35
+ sam.to(device='cuda')
36
+ predictor = SamPredictor(sam)
37
+ ```
38
+
39
+ Set the new image and export the embedding:
40
+
41
+ ```
42
+ image = cv2.imread('src/assets/dogs.jpg')
43
+ predictor.set_image(image)
44
+ image_embedding = predictor.get_image_embedding().cpu().numpy()
45
+ np.save("dogs_embedding.npy", image_embedding)
46
+ ```
47
+
48
+ Save the new image and embedding in `src/assets/data`.
49
+
50
+ ## Export the ONNX model
51
+
52
+ You also need to export the quantized ONNX model from the [ONNX Model Example notebook](https://github.com/facebookresearch/segment-anything/blob/main/notebooks/onnx_model_example.ipynb).
53
+
54
+ Run the cell in the notebook which saves the `sam_onnx_quantized_example.onnx` file, download it and copy it to the path `/model/sam_onnx_quantized_example.onnx`.
55
+
56
+ Here is a snippet of the export/quantization code:
57
+
58
+ ```
59
+ onnx_model_path = "sam_onnx_example.onnx"
60
+ onnx_model_quantized_path = "sam_onnx_quantized_example.onnx"
61
+ quantize_dynamic(
62
+ model_input=onnx_model_path,
63
+ model_output=onnx_model_quantized_path,
64
+ optimize_model=True,
65
+ per_channel=False,
66
+ reduce_range=False,
67
+ weight_type=QuantType.QUInt8,
68
+ )
69
+ ```
70
+
71
+ **NOTE: if you change the ONNX model by using a new checkpoint you need to also re-export the embedding.**
72
+
73
+ ## Update the image, embedding, model in the app
74
+
75
+ Update the following file paths at the top of`App.tsx`:
76
+
77
+ ```py
78
+ const IMAGE_PATH = "/assets/data/dogs.jpg";
79
+ const IMAGE_EMBEDDING = "/assets/data/dogs_embedding.npy";
80
+ const MODEL_DIR = "/model/sam_onnx_quantized_example.onnx";
81
+ ```
82
+
83
+ ## ONNX multithreading with SharedArrayBuffer
84
+
85
+ To use multithreading, the appropriate headers need to be set to create a cross origin isolation state which will enable use of `SharedArrayBuffer` (see this [blog post](https://cloudblogs.microsoft.com/opensource/2021/09/02/onnx-runtime-web-running-your-machine-learning-model-in-browser/) for more details)
86
+
87
+ The headers below are set in `configs/webpack/dev.js`:
88
+
89
+ ```js
90
+ headers: {
91
+ "Cross-Origin-Opener-Policy": "same-origin",
92
+ "Cross-Origin-Embedder-Policy": "credentialless",
93
+ }
94
+ ```
95
+
96
+ ## Structure of the app
97
+
98
+ **`App.tsx`**
99
+
100
+ - Initializes ONNX model
101
+ - Loads image embedding and image
102
+ - Runs the ONNX model based on input prompts
103
+
104
+ **`Stage.tsx`**
105
+
106
+ - Handles mouse move interaction to update the ONNX model prompt
107
+
108
+ **`Tool.tsx`**
109
+
110
+ - Renders the image and the mask prediction
111
+
112
+ **`helpers/maskUtils.tsx`**
113
+
114
+ - Conversion of ONNX model output from array to an HTMLImageElement
115
+
116
+ **`helpers/onnxModelAPI.tsx`**
117
+
118
+ - Formats the inputs for the ONNX model
119
+
120
+ **`helpers/scaleHelper.tsx`**
121
+
122
+ - Handles image scaling logic for SAM (longest size 1024)
123
+
124
+ **`hooks/`**
125
+
126
+ - Handle shared state for the app
segment-anything/content/segment-anything/demo/configs/webpack/common.js ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ // All rights reserved.
3
+
4
+ // This source code is licensed under the license found in the
5
+ // LICENSE file in the root directory of this source tree.
6
+
7
+ const { resolve } = require("path");
8
+ const HtmlWebpackPlugin = require("html-webpack-plugin");
9
+ const FriendlyErrorsWebpackPlugin = require("friendly-errors-webpack-plugin");
10
+ const CopyPlugin = require("copy-webpack-plugin");
11
+ const webpack = require("webpack");
12
+
13
+ module.exports = {
14
+ entry: "./src/index.tsx",
15
+ resolve: {
16
+ extensions: [".js", ".jsx", ".ts", ".tsx"],
17
+ },
18
+ output: {
19
+ path: resolve(__dirname, "dist"),
20
+ },
21
+ module: {
22
+ rules: [
23
+ {
24
+ test: /\.mjs$/,
25
+ include: /node_modules/,
26
+ type: "javascript/auto",
27
+ resolve: {
28
+ fullySpecified: false,
29
+ },
30
+ },
31
+ {
32
+ test: [/\.jsx?$/, /\.tsx?$/],
33
+ use: ["ts-loader"],
34
+ exclude: /node_modules/,
35
+ },
36
+ {
37
+ test: /\.css$/,
38
+ use: ["style-loader", "css-loader"],
39
+ },
40
+ {
41
+ test: /\.(scss|sass)$/,
42
+ use: ["style-loader", "css-loader", "postcss-loader"],
43
+ },
44
+ {
45
+ test: /\.(jpe?g|png|gif|svg)$/i,
46
+ use: [
47
+ "file-loader?hash=sha512&digest=hex&name=img/[contenthash].[ext]",
48
+ "image-webpack-loader?bypassOnDebug&optipng.optimizationLevel=7&gifsicle.interlaced=false",
49
+ ],
50
+ },
51
+ {
52
+ test: /\.(woff|woff2|ttf)$/,
53
+ use: {
54
+ loader: "url-loader",
55
+ },
56
+ },
57
+ ],
58
+ },
59
+ plugins: [
60
+ new CopyPlugin({
61
+ patterns: [
62
+ {
63
+ from: "node_modules/onnxruntime-web/dist/*.wasm",
64
+ to: "[name][ext]",
65
+ },
66
+ {
67
+ from: "model",
68
+ to: "model",
69
+ },
70
+ {
71
+ from: "src/assets",
72
+ to: "assets",
73
+ },
74
+ ],
75
+ }),
76
+ new HtmlWebpackPlugin({
77
+ template: "./src/assets/index.html",
78
+ }),
79
+ new FriendlyErrorsWebpackPlugin(),
80
+ new webpack.ProvidePlugin({
81
+ process: "process/browser",
82
+ }),
83
+ ],
84
+ };
segment-anything/content/segment-anything/demo/configs/webpack/dev.js ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ // All rights reserved.
3
+
4
+ // This source code is licensed under the license found in the
5
+ // LICENSE file in the root directory of this source tree.
6
+
7
+ // development config
8
+ const { merge } = require("webpack-merge");
9
+ const commonConfig = require("./common");
10
+
11
+ module.exports = merge(commonConfig, {
12
+ mode: "development",
13
+ devServer: {
14
+ hot: true, // enable HMR on the server
15
+ open: true,
16
+ // These headers enable the cross origin isolation state
17
+ // needed to enable use of SharedArrayBuffer for ONNX
18
+ // multithreading.
19
+ headers: {
20
+ "Cross-Origin-Opener-Policy": "same-origin",
21
+ "Cross-Origin-Embedder-Policy": "credentialless",
22
+ },
23
+ },
24
+ devtool: "cheap-module-source-map",
25
+ });
segment-anything/content/segment-anything/demo/configs/webpack/prod.js ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ // All rights reserved.
3
+
4
+ // This source code is licensed under the license found in the
5
+ // LICENSE file in the root directory of this source tree.
6
+
7
+ // production config
8
+ const { merge } = require("webpack-merge");
9
+ const { resolve } = require("path");
10
+ const Dotenv = require("dotenv-webpack");
11
+ const commonConfig = require("./common");
12
+
13
+ module.exports = merge(commonConfig, {
14
+ mode: "production",
15
+ output: {
16
+ filename: "js/bundle.[contenthash].min.js",
17
+ path: resolve(__dirname, "../../dist"),
18
+ publicPath: "/",
19
+ },
20
+ devtool: "source-map",
21
+ plugins: [new Dotenv()],
22
+ });
segment-anything/content/segment-anything/demo/package.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "segment-anything-mini-demo",
3
+ "version": "0.1.0",
4
+ "license": "MIT",
5
+ "scripts": {
6
+ "build": "yarn run clean-dist && webpack --config=configs/webpack/prod.js && mv dist/*.wasm dist/js",
7
+ "clean-dist": "rimraf dist/*",
8
+ "lint": "eslint './src/**/*.{js,ts,tsx}' --quiet",
9
+ "start": "yarn run start-dev",
10
+ "test": "yarn run start-model-test",
11
+ "start-dev": "webpack serve --config=configs/webpack/dev.js"
12
+ },
13
+ "devDependencies": {
14
+ "@babel/core": "^7.18.13",
15
+ "@babel/preset-env": "^7.18.10",
16
+ "@babel/preset-react": "^7.18.6",
17
+ "@babel/preset-typescript": "^7.18.6",
18
+ "@pmmmwh/react-refresh-webpack-plugin": "^0.5.7",
19
+ "@testing-library/react": "^13.3.0",
20
+ "@types/node": "^18.7.13",
21
+ "@types/react": "^18.0.17",
22
+ "@types/react-dom": "^18.0.6",
23
+ "@types/underscore": "^1.11.4",
24
+ "@typescript-eslint/eslint-plugin": "^5.35.1",
25
+ "@typescript-eslint/parser": "^5.35.1",
26
+ "babel-loader": "^8.2.5",
27
+ "copy-webpack-plugin": "^11.0.0",
28
+ "css-loader": "^6.7.1",
29
+ "dotenv": "^16.0.2",
30
+ "dotenv-webpack": "^8.0.1",
31
+ "eslint": "^8.22.0",
32
+ "eslint-plugin-react": "^7.31.0",
33
+ "file-loader": "^6.2.0",
34
+ "fork-ts-checker-webpack-plugin": "^7.2.13",
35
+ "friendly-errors-webpack-plugin": "^1.7.0",
36
+ "html-webpack-plugin": "^5.5.0",
37
+ "image-webpack-loader": "^8.1.0",
38
+ "postcss-loader": "^7.0.1",
39
+ "postcss-preset-env": "^7.8.0",
40
+ "process": "^0.11.10",
41
+ "rimraf": "^3.0.2",
42
+ "sass": "^1.54.5",
43
+ "sass-loader": "^13.0.2",
44
+ "style-loader": "^3.3.1",
45
+ "tailwindcss": "^3.1.8",
46
+ "ts-loader": "^9.3.1",
47
+ "typescript": "^4.8.2",
48
+ "webpack": "^5.74.0",
49
+ "webpack-cli": "^4.10.0",
50
+ "webpack-dev-server": "^4.10.0",
51
+ "webpack-dotenv-plugin": "^2.1.0",
52
+ "webpack-merge": "^5.8.0"
53
+ },
54
+ "dependencies": {
55
+ "npyjs": "^0.4.0",
56
+ "onnxruntime-web": "^1.14.0",
57
+ "react": "^18.2.0",
58
+ "react-dom": "^18.2.0",
59
+ "underscore": "^1.13.6",
60
+ "react-refresh": "^0.14.0"
61
+ }
62
+ }
segment-anything/content/segment-anything/demo/postcss.config.js ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ // Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ // All rights reserved.
3
+
4
+ // This source code is licensed under the license found in the
5
+ // LICENSE file in the root directory of this source tree.
6
+
7
+ const tailwindcss = require("tailwindcss");
8
+ module.exports = {
9
+ plugins: ["postcss-preset-env", 'tailwindcss/nesting', tailwindcss],
10
+ };
segment-anything/content/segment-anything/demo/src/App.tsx ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ // All rights reserved.
3
+
4
+ // This source code is licensed under the license found in the
5
+ // LICENSE file in the root directory of this source tree.
6
+
7
+ import { InferenceSession, Tensor } from "onnxruntime-web";
8
+ import React, { useContext, useEffect, useState } from "react";
9
+ import "./assets/scss/App.scss";
10
+ import { handleImageScale } from "./components/helpers/scaleHelper";
11
+ import { modelScaleProps } from "./components/helpers/Interfaces";
12
+ import { onnxMaskToImage } from "./components/helpers/maskUtils";
13
+ import { modelData } from "./components/helpers/onnxModelAPI";
14
+ import Stage from "./components/Stage";
15
+ import AppContext from "./components/hooks/createContext";
16
+ const ort = require("onnxruntime-web");
17
+ /* @ts-ignore */
18
+ import npyjs from "npyjs";
19
+
20
+ // Define image, embedding and model paths
21
+ const IMAGE_PATH = "/assets/data/dogs.jpg";
22
+ const IMAGE_EMBEDDING = "/assets/data/dogs_embedding.npy";
23
+ const MODEL_DIR = "/model/sam_onnx_quantized_example.onnx";
24
+
25
+ const App = () => {
26
+ const {
27
+ clicks: [clicks],
28
+ image: [, setImage],
29
+ maskImg: [, setMaskImg],
30
+ } = useContext(AppContext)!;
31
+ const [model, setModel] = useState<InferenceSession | null>(null); // ONNX model
32
+ const [tensor, setTensor] = useState<Tensor | null>(null); // Image embedding tensor
33
+
34
+ // The ONNX model expects the input to be rescaled to 1024.
35
+ // The modelScale state variable keeps track of the scale values.
36
+ const [modelScale, setModelScale] = useState<modelScaleProps | null>(null);
37
+
38
+ // Initialize the ONNX model. load the image, and load the SAM
39
+ // pre-computed image embedding
40
+ useEffect(() => {
41
+ // Initialize the ONNX model
42
+ const initModel = async () => {
43
+ try {
44
+ if (MODEL_DIR === undefined) return;
45
+ const URL: string = MODEL_DIR;
46
+ const model = await InferenceSession.create(URL);
47
+ setModel(model);
48
+ } catch (e) {
49
+ console.log(e);
50
+ }
51
+ };
52
+ initModel();
53
+
54
+ // Load the image
55
+ const url = new URL(IMAGE_PATH, location.origin);
56
+ loadImage(url);
57
+
58
+ // Load the Segment Anything pre-computed embedding
59
+ Promise.resolve(loadNpyTensor(IMAGE_EMBEDDING, "float32")).then(
60
+ (embedding) => setTensor(embedding)
61
+ );
62
+ }, []);
63
+
64
+ const loadImage = async (url: URL) => {
65
+ try {
66
+ const img = new Image();
67
+ img.src = url.href;
68
+ img.onload = () => {
69
+ const { height, width, samScale } = handleImageScale(img);
70
+ setModelScale({
71
+ height: height, // original image height
72
+ width: width, // original image width
73
+ samScale: samScale, // scaling factor for image which has been resized to longest side 1024
74
+ });
75
+ img.width = width;
76
+ img.height = height;
77
+ setImage(img);
78
+ };
79
+ } catch (error) {
80
+ console.log(error);
81
+ }
82
+ };
83
+
84
+ // Decode a Numpy file into a tensor.
85
+ const loadNpyTensor = async (tensorFile: string, dType: string) => {
86
+ let npLoader = new npyjs();
87
+ const npArray = await npLoader.load(tensorFile);
88
+ const tensor = new ort.Tensor(dType, npArray.data, npArray.shape);
89
+ return tensor;
90
+ };
91
+
92
+ // Run the ONNX model every time clicks has changed
93
+ useEffect(() => {
94
+ runONNX();
95
+ }, [clicks]);
96
+
97
+ const runONNX = async () => {
98
+ try {
99
+ if (
100
+ model === null ||
101
+ clicks === null ||
102
+ tensor === null ||
103
+ modelScale === null
104
+ )
105
+ return;
106
+ else {
107
+ // Preapre the model input in the correct format for SAM.
108
+ // The modelData function is from onnxModelAPI.tsx.
109
+ const feeds = modelData({
110
+ clicks,
111
+ tensor,
112
+ modelScale,
113
+ });
114
+ if (feeds === undefined) return;
115
+ // Run the SAM ONNX model with the feeds returned from modelData()
116
+ const results = await model.run(feeds);
117
+ const output = results[model.outputNames[0]];
118
+ // The predicted mask returned from the ONNX model is an array which is
119
+ // rendered as an HTML image using onnxMaskToImage() from maskUtils.tsx.
120
+ setMaskImg(onnxMaskToImage(output.data, output.dims[2], output.dims[3]));
121
+ }
122
+ } catch (e) {
123
+ console.log(e);
124
+ }
125
+ };
126
+
127
+ return <Stage />;
128
+ };
129
+
130
+ export default App;
segment-anything/content/segment-anything/demo/src/assets/data/dogs.jpg ADDED
segment-anything/content/segment-anything/demo/src/assets/index.html ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!DOCTYPE html>
2
+ <html lang="en" dir="ltr" prefix="og: https://ogp.me/ns#" class="w-full h-full">
3
+ <head>
4
+ <meta charset="utf-8" />
5
+ <meta
6
+ name="viewport"
7
+ content="width=device-width, initial-scale=1, shrink-to-fit=no"
8
+ />
9
+ <title>Segment Anything Demo</title>
10
+
11
+ <!-- Meta Tags -->
12
+ <meta property="og:type" content="website" />
13
+ <meta property="og:title" content="Segment Anything Demo" />
14
+ </head>
15
+ <body class="w-full h-full">
16
+ <div id="root" class="w-full h-full"></div>
17
+ </body>
18
+ </html>
segment-anything/content/segment-anything/demo/src/assets/scss/App.scss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ @tailwind base;
2
+ @tailwind components;
3
+ @tailwind utilities;
segment-anything/content/segment-anything/demo/src/components/Stage.tsx ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ // All rights reserved.
3
+
4
+ // This source code is licensed under the license found in the
5
+ // LICENSE file in the root directory of this source tree.
6
+
7
+ import React, { useContext } from "react";
8
+ import * as _ from "underscore";
9
+ import Tool from "./Tool";
10
+ import { modelInputProps } from "./helpers/Interfaces";
11
+ import AppContext from "./hooks/createContext";
12
+
13
+ const Stage = () => {
14
+ const {
15
+ clicks: [, setClicks],
16
+ image: [image],
17
+ } = useContext(AppContext)!;
18
+
19
+ const getClick = (x: number, y: number): modelInputProps => {
20
+ const clickType = 1;
21
+ return { x, y, clickType };
22
+ };
23
+
24
+ // Get mouse position and scale the (x, y) coordinates back to the natural
25
+ // scale of the image. Update the state of clicks with setClicks to trigger
26
+ // the ONNX model to run and generate a new mask via a useEffect in App.tsx
27
+ const handleMouseMove = _.throttle((e: any) => {
28
+ let el = e.nativeEvent.target;
29
+ const rect = el.getBoundingClientRect();
30
+ let x = e.clientX - rect.left;
31
+ let y = e.clientY - rect.top;
32
+ const imageScale = image ? image.width / el.offsetWidth : 1;
33
+ x *= imageScale;
34
+ y *= imageScale;
35
+ const click = getClick(x, y);
36
+ if (click) setClicks([click]);
37
+ }, 15);
38
+
39
+ const flexCenterClasses = "flex items-center justify-center";
40
+ return (
41
+ <div className={`${flexCenterClasses} w-full h-full`}>
42
+ <div className={`${flexCenterClasses} relative w-[90%] h-[90%]`}>
43
+ <Tool handleMouseMove={handleMouseMove} />
44
+ </div>
45
+ </div>
46
+ );
47
+ };
48
+
49
+ export default Stage;
segment-anything/content/segment-anything/demo/src/components/Tool.tsx ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ // All rights reserved.
3
+
4
+ // This source code is licensed under the license found in the
5
+ // LICENSE file in the root directory of this source tree.
6
+
7
+ import React, { useContext, useEffect, useState } from "react";
8
+ import AppContext from "./hooks/createContext";
9
+ import { ToolProps } from "./helpers/Interfaces";
10
+ import * as _ from "underscore";
11
+
12
+ const Tool = ({ handleMouseMove }: ToolProps) => {
13
+ const {
14
+ image: [image],
15
+ maskImg: [maskImg, setMaskImg],
16
+ } = useContext(AppContext)!;
17
+
18
+ // Determine if we should shrink or grow the images to match the
19
+ // width or the height of the page and setup a ResizeObserver to
20
+ // monitor changes in the size of the page
21
+ const [shouldFitToWidth, setShouldFitToWidth] = useState(true);
22
+ const bodyEl = document.body;
23
+ const fitToPage = () => {
24
+ if (!image) return;
25
+ const imageAspectRatio = image.width / image.height;
26
+ const screenAspectRatio = window.innerWidth / window.innerHeight;
27
+ setShouldFitToWidth(imageAspectRatio > screenAspectRatio);
28
+ };
29
+ const resizeObserver = new ResizeObserver((entries) => {
30
+ for (const entry of entries) {
31
+ if (entry.target === bodyEl) {
32
+ fitToPage();
33
+ }
34
+ }
35
+ });
36
+ useEffect(() => {
37
+ fitToPage();
38
+ resizeObserver.observe(bodyEl);
39
+ return () => {
40
+ resizeObserver.unobserve(bodyEl);
41
+ };
42
+ }, [image]);
43
+
44
+ const imageClasses = "";
45
+ const maskImageClasses = `absolute opacity-40 pointer-events-none`;
46
+
47
+ // Render the image and the predicted mask image on top
48
+ return (
49
+ <>
50
+ {image && (
51
+ <img
52
+ onMouseMove={handleMouseMove}
53
+ onMouseOut={() => _.defer(() => setMaskImg(null))}
54
+ onTouchStart={handleMouseMove}
55
+ src={image.src}
56
+ className={`${
57
+ shouldFitToWidth ? "w-full" : "h-full"
58
+ } ${imageClasses}`}
59
+ ></img>
60
+ )}
61
+ {maskImg && (
62
+ <img
63
+ src={maskImg.src}
64
+ className={`${
65
+ shouldFitToWidth ? "w-full" : "h-full"
66
+ } ${maskImageClasses}`}
67
+ ></img>
68
+ )}
69
+ </>
70
+ );
71
+ };
72
+
73
+ export default Tool;
segment-anything/content/segment-anything/demo/src/components/helpers/Interfaces.tsx ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ // All rights reserved.
3
+
4
+ // This source code is licensed under the license found in the
5
+ // LICENSE file in the root directory of this source tree.
6
+
7
+ import { Tensor } from "onnxruntime-web";
8
+
9
+ export interface modelScaleProps {
10
+ samScale: number;
11
+ height: number;
12
+ width: number;
13
+ }
14
+
15
+ export interface modelInputProps {
16
+ x: number;
17
+ y: number;
18
+ clickType: number;
19
+ }
20
+
21
+ export interface modeDataProps {
22
+ clicks?: Array<modelInputProps>;
23
+ tensor: Tensor;
24
+ modelScale: modelScaleProps;
25
+ }
26
+
27
+ export interface ToolProps {
28
+ handleMouseMove: (e: any) => void;
29
+ }
segment-anything/content/segment-anything/demo/src/components/helpers/maskUtils.tsx ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ // All rights reserved.
3
+
4
+ // This source code is licensed under the license found in the
5
+ // LICENSE file in the root directory of this source tree.
6
+
7
+ // Convert the onnx model mask prediction to ImageData
8
+ function arrayToImageData(input: any, width: number, height: number) {
9
+ const [r, g, b, a] = [0, 114, 189, 255]; // the masks's blue color
10
+ const arr = new Uint8ClampedArray(4 * width * height).fill(0);
11
+ for (let i = 0; i < input.length; i++) {
12
+
13
+ // Threshold the onnx model mask prediction at 0.0
14
+ // This is equivalent to thresholding the mask using predictor.model.mask_threshold
15
+ // in python
16
+ if (input[i] > 0.0) {
17
+ arr[4 * i + 0] = r;
18
+ arr[4 * i + 1] = g;
19
+ arr[4 * i + 2] = b;
20
+ arr[4 * i + 3] = a;
21
+ }
22
+ }
23
+ return new ImageData(arr, height, width);
24
+ }
25
+
26
+ // Use a Canvas element to produce an image from ImageData
27
+ function imageDataToImage(imageData: ImageData) {
28
+ const canvas = imageDataToCanvas(imageData);
29
+ const image = new Image();
30
+ image.src = canvas.toDataURL();
31
+ return image;
32
+ }
33
+
34
+ // Canvas elements can be created from ImageData
35
+ function imageDataToCanvas(imageData: ImageData) {
36
+ const canvas = document.createElement("canvas");
37
+ const ctx = canvas.getContext("2d");
38
+ canvas.width = imageData.width;
39
+ canvas.height = imageData.height;
40
+ ctx?.putImageData(imageData, 0, 0);
41
+ return canvas;
42
+ }
43
+
44
+ // Convert the onnx model mask output to an HTMLImageElement
45
+ export function onnxMaskToImage(input: any, width: number, height: number) {
46
+ return imageDataToImage(arrayToImageData(input, width, height));
47
+ }
segment-anything/content/segment-anything/demo/src/components/helpers/onnxModelAPI.tsx ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ // All rights reserved.
3
+
4
+ // This source code is licensed under the license found in the
5
+ // LICENSE file in the root directory of this source tree.
6
+
7
+ import { Tensor } from "onnxruntime-web";
8
+ import { modeDataProps } from "./Interfaces";
9
+
10
+ const modelData = ({ clicks, tensor, modelScale }: modeDataProps) => {
11
+ const imageEmbedding = tensor;
12
+ let pointCoords;
13
+ let pointLabels;
14
+ let pointCoordsTensor;
15
+ let pointLabelsTensor;
16
+
17
+ // Check there are input click prompts
18
+ if (clicks) {
19
+ let n = clicks.length;
20
+
21
+ // If there is no box input, a single padding point with
22
+ // label -1 and coordinates (0.0, 0.0) should be concatenated
23
+ // so initialize the array to support (n + 1) points.
24
+ pointCoords = new Float32Array(2 * (n + 1));
25
+ pointLabels = new Float32Array(n + 1);
26
+
27
+ // Add clicks and scale to what SAM expects
28
+ for (let i = 0; i < n; i++) {
29
+ pointCoords[2 * i] = clicks[i].x * modelScale.samScale;
30
+ pointCoords[2 * i + 1] = clicks[i].y * modelScale.samScale;
31
+ pointLabels[i] = clicks[i].clickType;
32
+ }
33
+
34
+ // Add in the extra point/label when only clicks and no box
35
+ // The extra point is at (0, 0) with label -1
36
+ pointCoords[2 * n] = 0.0;
37
+ pointCoords[2 * n + 1] = 0.0;
38
+ pointLabels[n] = -1.0;
39
+
40
+ // Create the tensor
41
+ pointCoordsTensor = new Tensor("float32", pointCoords, [1, n + 1, 2]);
42
+ pointLabelsTensor = new Tensor("float32", pointLabels, [1, n + 1]);
43
+ }
44
+ const imageSizeTensor = new Tensor("float32", [
45
+ modelScale.height,
46
+ modelScale.width,
47
+ ]);
48
+
49
+ if (pointCoordsTensor === undefined || pointLabelsTensor === undefined)
50
+ return;
51
+
52
+ // There is no previous mask, so default to an empty tensor
53
+ const maskInput = new Tensor(
54
+ "float32",
55
+ new Float32Array(256 * 256),
56
+ [1, 1, 256, 256]
57
+ );
58
+ // There is no previous mask, so default to 0
59
+ const hasMaskInput = new Tensor("float32", [0]);
60
+
61
+ return {
62
+ image_embeddings: imageEmbedding,
63
+ point_coords: pointCoordsTensor,
64
+ point_labels: pointLabelsTensor,
65
+ orig_im_size: imageSizeTensor,
66
+ mask_input: maskInput,
67
+ has_mask_input: hasMaskInput,
68
+ };
69
+ };
70
+
71
+ export { modelData };
segment-anything/content/segment-anything/demo/src/components/helpers/scaleHelper.tsx ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ // All rights reserved.
3
+
4
+ // This source code is licensed under the license found in the
5
+ // LICENSE file in the root directory of this source tree.
6
+
7
+
8
+ // Helper function for handling image scaling needed for SAM
9
+ const handleImageScale = (image: HTMLImageElement) => {
10
+ // Input images to SAM must be resized so the longest side is 1024
11
+ const LONG_SIDE_LENGTH = 1024;
12
+ let w = image.naturalWidth;
13
+ let h = image.naturalHeight;
14
+ const samScale = LONG_SIDE_LENGTH / Math.max(h, w);
15
+ return { height: h, width: w, samScale };
16
+ };
17
+
18
+ export { handleImageScale };
segment-anything/content/segment-anything/demo/src/components/hooks/context.tsx ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ // All rights reserved.
3
+
4
+ // This source code is licensed under the license found in the
5
+ // LICENSE file in the root directory of this source tree.
6
+
7
+ import React, { useState } from "react";
8
+ import { modelInputProps } from "../helpers/Interfaces";
9
+ import AppContext from "./createContext";
10
+
11
+ const AppContextProvider = (props: {
12
+ children: React.ReactElement<any, string | React.JSXElementConstructor<any>>;
13
+ }) => {
14
+ const [clicks, setClicks] = useState<Array<modelInputProps> | null>(null);
15
+ const [image, setImage] = useState<HTMLImageElement | null>(null);
16
+ const [maskImg, setMaskImg] = useState<HTMLImageElement | null>(null);
17
+
18
+ return (
19
+ <AppContext.Provider
20
+ value={{
21
+ clicks: [clicks, setClicks],
22
+ image: [image, setImage],
23
+ maskImg: [maskImg, setMaskImg],
24
+ }}
25
+ >
26
+ {props.children}
27
+ </AppContext.Provider>
28
+ );
29
+ };
30
+
31
+ export default AppContextProvider;
segment-anything/content/segment-anything/demo/src/components/hooks/createContext.tsx ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ // All rights reserved.
3
+
4
+ // This source code is licensed under the license found in the
5
+ // LICENSE file in the root directory of this source tree.
6
+
7
+ import { createContext } from "react";
8
+ import { modelInputProps } from "../helpers/Interfaces";
9
+
10
+ interface contextProps {
11
+ clicks: [
12
+ clicks: modelInputProps[] | null,
13
+ setClicks: (e: modelInputProps[] | null) => void
14
+ ];
15
+ image: [
16
+ image: HTMLImageElement | null,
17
+ setImage: (e: HTMLImageElement | null) => void
18
+ ];
19
+ maskImg: [
20
+ maskImg: HTMLImageElement | null,
21
+ setMaskImg: (e: HTMLImageElement | null) => void
22
+ ];
23
+ }
24
+
25
+ const AppContext = createContext<contextProps | null>(null);
26
+
27
+ export default AppContext;
segment-anything/content/segment-anything/demo/src/index.tsx ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ // All rights reserved.
3
+
4
+ // This source code is licensed under the license found in the
5
+ // LICENSE file in the root directory of this source tree.
6
+
7
+ import * as React from "react";
8
+ import { createRoot } from "react-dom/client";
9
+ import AppContextProvider from "./components/hooks/context";
10
+ import App from "./App";
11
+ const container = document.getElementById("root");
12
+ const root = createRoot(container!);
13
+ root.render(
14
+ <AppContextProvider>
15
+ <App/>
16
+ </AppContextProvider>
17
+ );
segment-anything/content/segment-anything/demo/tailwind.config.js ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ // All rights reserved.
3
+
4
+ // This source code is licensed under the license found in the
5
+ // LICENSE file in the root directory of this source tree.
6
+
7
+ /** @type {import('tailwindcss').Config} */
8
+ module.exports = {
9
+ content: ["./src/**/*.{html,js,tsx}"],
10
+ theme: {},
11
+ plugins: [],
12
+ };
segment-anything/content/segment-anything/demo/tsconfig.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "compilerOptions": {
3
+ "lib": ["dom", "dom.iterable", "esnext"],
4
+ "allowJs": true,
5
+ "skipLibCheck": true,
6
+ "strict": true,
7
+ "forceConsistentCasingInFileNames": true,
8
+ "noEmit": false,
9
+ "esModuleInterop": true,
10
+ "module": "esnext",
11
+ "moduleResolution": "node",
12
+ "resolveJsonModule": true,
13
+ "isolatedModules": true,
14
+ "jsx": "react",
15
+ "incremental": true,
16
+ "target": "ESNext",
17
+ "useDefineForClassFields": true,
18
+ "allowSyntheticDefaultImports": true,
19
+ "outDir": "./dist/",
20
+ "sourceMap": true
21
+ },
22
+ "include": ["next-env.d.ts", "**/*.ts", "**/*.tsx", "src"],
23
+ "exclude": ["node_modules"]
24
+ }
segment-anything/content/segment-anything/linter.sh ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash -e
2
+ # Copyright (c) Facebook, Inc. and its affiliates.
3
+
4
+ {
5
+ black --version | grep -E "23\." > /dev/null
6
+ } || {
7
+ echo "Linter requires 'black==23.*' !"
8
+ exit 1
9
+ }
10
+
11
+ ISORT_VERSION=$(isort --version-number)
12
+ if [[ "$ISORT_VERSION" != 5.12* ]]; then
13
+ echo "Linter requires isort==5.12.0 !"
14
+ exit 1
15
+ fi
16
+
17
+ echo "Running isort ..."
18
+ isort . --atomic
19
+
20
+ echo "Running black ..."
21
+ black -l 100 .
22
+
23
+ echo "Running flake8 ..."
24
+ if [ -x "$(command -v flake8)" ]; then
25
+ flake8 .
26
+ else
27
+ python3 -m flake8 .
28
+ fi
29
+
30
+ echo "Running mypy..."
31
+
32
+ mypy --exclude 'setup.py|notebooks' .
segment-anything/content/segment-anything/notebooks/automatic_mask_generator_example.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
segment-anything/content/segment-anything/notebooks/images/dog.jpg ADDED
segment-anything/content/segment-anything/notebooks/images/groceries.jpg ADDED
segment-anything/content/segment-anything/notebooks/images/truck.jpg ADDED
segment-anything/content/segment-anything/notebooks/onnx_model_example.ipynb ADDED
@@ -0,0 +1,774 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "901c8ef3",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "# Copyright (c) Meta Platforms, Inc. and affiliates."
11
+ ]
12
+ },
13
+ {
14
+ "cell_type": "markdown",
15
+ "id": "1662bb7c",
16
+ "metadata": {},
17
+ "source": [
18
+ "# Produces masks from prompts using an ONNX model"
19
+ ]
20
+ },
21
+ {
22
+ "cell_type": "markdown",
23
+ "id": "7fcc21a0",
24
+ "metadata": {},
25
+ "source": [
26
+ "SAM's prompt encoder and mask decoder are very lightweight, which allows for efficient computation of a mask given user input. This notebook shows an example of how to export and use this lightweight component of the model in ONNX format, allowing it to run on a variety of platforms that support an ONNX runtime."
27
+ ]
28
+ },
29
+ {
30
+ "cell_type": "code",
31
+ "execution_count": 4,
32
+ "id": "86daff77",
33
+ "metadata": {},
34
+ "outputs": [
35
+ {
36
+ "data": {
37
+ "text/html": [
38
+ "\n",
39
+ "<a target=\"_blank\" href=\"https://colab.research.google.com/github/facebookresearch/segment-anything/blob/main/notebooks/onnx_model_example.ipynb\">\n",
40
+ " <img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/>\n",
41
+ "</a>\n"
42
+ ],
43
+ "text/plain": [
44
+ "<IPython.core.display.HTML object>"
45
+ ]
46
+ },
47
+ "metadata": {},
48
+ "output_type": "display_data"
49
+ }
50
+ ],
51
+ "source": [
52
+ "from IPython.display import display, HTML\n",
53
+ "display(HTML(\n",
54
+ "\"\"\"\n",
55
+ "<a target=\"_blank\" href=\"https://colab.research.google.com/github/facebookresearch/segment-anything/blob/main/notebooks/onnx_model_example.ipynb\">\n",
56
+ " <img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/>\n",
57
+ "</a>\n",
58
+ "\"\"\"\n",
59
+ "))"
60
+ ]
61
+ },
62
+ {
63
+ "cell_type": "markdown",
64
+ "id": "55ae4e00",
65
+ "metadata": {},
66
+ "source": [
67
+ "## Environment Set-up"
68
+ ]
69
+ },
70
+ {
71
+ "cell_type": "markdown",
72
+ "id": "109a5cc2",
73
+ "metadata": {},
74
+ "source": [
75
+ "If running locally using jupyter, first install `segment_anything` in your environment using the [installation instructions](https://github.com/facebookresearch/segment-anything#installation) in the repository. The latest stable versions of PyTorch and ONNX are recommended for this notebook. If running from Google Colab, set `using_colab=True` below and run the cell. In Colab, be sure to select 'GPU' under 'Edit'->'Notebook Settings'->'Hardware accelerator'."
76
+ ]
77
+ },
78
+ {
79
+ "cell_type": "code",
80
+ "execution_count": 5,
81
+ "id": "39b99fc4",
82
+ "metadata": {},
83
+ "outputs": [],
84
+ "source": [
85
+ "using_colab = False"
86
+ ]
87
+ },
88
+ {
89
+ "cell_type": "code",
90
+ "execution_count": 6,
91
+ "id": "296a69be",
92
+ "metadata": {},
93
+ "outputs": [],
94
+ "source": [
95
+ "if using_colab:\n",
96
+ " import torch\n",
97
+ " import torchvision\n",
98
+ " print(\"PyTorch version:\", torch.__version__)\n",
99
+ " print(\"Torchvision version:\", torchvision.__version__)\n",
100
+ " print(\"CUDA is available:\", torch.cuda.is_available())\n",
101
+ " import sys\n",
102
+ " !{sys.executable} -m pip install opencv-python matplotlib onnx onnxruntime\n",
103
+ " !{sys.executable} -m pip install 'git+https://github.com/facebookresearch/segment-anything.git'\n",
104
+ " \n",
105
+ " !mkdir images\n",
106
+ " !wget -P images https://raw.githubusercontent.com/facebookresearch/segment-anything/main/notebooks/images/truck.jpg\n",
107
+ " \n",
108
+ " !wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth"
109
+ ]
110
+ },
111
+ {
112
+ "cell_type": "markdown",
113
+ "id": "dc4a58be",
114
+ "metadata": {},
115
+ "source": [
116
+ "## Set-up"
117
+ ]
118
+ },
119
+ {
120
+ "cell_type": "markdown",
121
+ "id": "42396e8d",
122
+ "metadata": {},
123
+ "source": [
124
+ "Note that this notebook requires both the `onnx` and `onnxruntime` optional dependencies, in addition to `opencv-python` and `matplotlib` for visualization."
125
+ ]
126
+ },
127
+ {
128
+ "cell_type": "code",
129
+ "execution_count": null,
130
+ "id": "2c712610",
131
+ "metadata": {},
132
+ "outputs": [],
133
+ "source": [
134
+ "import torch\n",
135
+ "import numpy as np\n",
136
+ "import cv2\n",
137
+ "import matplotlib.pyplot as plt\n",
138
+ "from segment_anything import sam_model_registry, SamPredictor\n",
139
+ "from segment_anything.utils.onnx import SamOnnxModel\n",
140
+ "\n",
141
+ "import onnxruntime\n",
142
+ "from onnxruntime.quantization import QuantType\n",
143
+ "from onnxruntime.quantization.quantize import quantize_dynamic"
144
+ ]
145
+ },
146
+ {
147
+ "cell_type": "code",
148
+ "execution_count": null,
149
+ "id": "f29441b9",
150
+ "metadata": {},
151
+ "outputs": [],
152
+ "source": [
153
+ "def show_mask(mask, ax):\n",
154
+ " color = np.array([30/255, 144/255, 255/255, 0.6])\n",
155
+ " h, w = mask.shape[-2:]\n",
156
+ " mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)\n",
157
+ " ax.imshow(mask_image)\n",
158
+ " \n",
159
+ "def show_points(coords, labels, ax, marker_size=375):\n",
160
+ " pos_points = coords[labels==1]\n",
161
+ " neg_points = coords[labels==0]\n",
162
+ " ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)\n",
163
+ " ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) \n",
164
+ " \n",
165
+ "def show_box(box, ax):\n",
166
+ " x0, y0 = box[0], box[1]\n",
167
+ " w, h = box[2] - box[0], box[3] - box[1]\n",
168
+ " ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2)) "
169
+ ]
170
+ },
171
+ {
172
+ "cell_type": "markdown",
173
+ "id": "bd0f6b2b",
174
+ "metadata": {},
175
+ "source": [
176
+ "## Export an ONNX model"
177
+ ]
178
+ },
179
+ {
180
+ "cell_type": "markdown",
181
+ "id": "1540f719",
182
+ "metadata": {},
183
+ "source": [
184
+ "Set the path below to a SAM model checkpoint, then load the model. This will be needed to both export the model and to calculate embeddings for the model."
185
+ ]
186
+ },
187
+ {
188
+ "cell_type": "code",
189
+ "execution_count": null,
190
+ "id": "76fc53f4",
191
+ "metadata": {},
192
+ "outputs": [],
193
+ "source": [
194
+ "checkpoint = \"sam_vit_h_4b8939.pth\"\n",
195
+ "model_type = \"vit_h\""
196
+ ]
197
+ },
198
+ {
199
+ "cell_type": "code",
200
+ "execution_count": null,
201
+ "id": "11bfc8aa",
202
+ "metadata": {},
203
+ "outputs": [],
204
+ "source": [
205
+ "sam = sam_model_registry[model_type](checkpoint=checkpoint)"
206
+ ]
207
+ },
208
+ {
209
+ "cell_type": "markdown",
210
+ "id": "450c089c",
211
+ "metadata": {},
212
+ "source": [
213
+ "The script `segment-anything/scripts/export_onnx_model.py` can be used to export the necessary portion of SAM. Alternatively, run the following code to export an ONNX model. If you have already exported a model, set the path below and skip to the next section. Assure that the exported ONNX model aligns with the checkpoint and model type set above. This notebook expects the model was exported with the parameter `return_single_mask=True`."
214
+ ]
215
+ },
216
+ {
217
+ "cell_type": "code",
218
+ "execution_count": null,
219
+ "id": "38a8add8",
220
+ "metadata": {},
221
+ "outputs": [],
222
+ "source": [
223
+ "onnx_model_path = None # Set to use an already exported model, then skip to the next section."
224
+ ]
225
+ },
226
+ {
227
+ "cell_type": "code",
228
+ "execution_count": null,
229
+ "id": "7da638ba",
230
+ "metadata": {
231
+ "scrolled": false
232
+ },
233
+ "outputs": [],
234
+ "source": [
235
+ "import warnings\n",
236
+ "\n",
237
+ "onnx_model_path = \"sam_onnx_example.onnx\"\n",
238
+ "\n",
239
+ "onnx_model = SamOnnxModel(sam, return_single_mask=True)\n",
240
+ "\n",
241
+ "dynamic_axes = {\n",
242
+ " \"point_coords\": {1: \"num_points\"},\n",
243
+ " \"point_labels\": {1: \"num_points\"},\n",
244
+ "}\n",
245
+ "\n",
246
+ "embed_dim = sam.prompt_encoder.embed_dim\n",
247
+ "embed_size = sam.prompt_encoder.image_embedding_size\n",
248
+ "mask_input_size = [4 * x for x in embed_size]\n",
249
+ "dummy_inputs = {\n",
250
+ " \"image_embeddings\": torch.randn(1, embed_dim, *embed_size, dtype=torch.float),\n",
251
+ " \"point_coords\": torch.randint(low=0, high=1024, size=(1, 5, 2), dtype=torch.float),\n",
252
+ " \"point_labels\": torch.randint(low=0, high=4, size=(1, 5), dtype=torch.float),\n",
253
+ " \"mask_input\": torch.randn(1, 1, *mask_input_size, dtype=torch.float),\n",
254
+ " \"has_mask_input\": torch.tensor([1], dtype=torch.float),\n",
255
+ " \"orig_im_size\": torch.tensor([1500, 2250], dtype=torch.float),\n",
256
+ "}\n",
257
+ "output_names = [\"masks\", \"iou_predictions\", \"low_res_masks\"]\n",
258
+ "\n",
259
+ "with warnings.catch_warnings():\n",
260
+ " warnings.filterwarnings(\"ignore\", category=torch.jit.TracerWarning)\n",
261
+ " warnings.filterwarnings(\"ignore\", category=UserWarning)\n",
262
+ " with open(onnx_model_path, \"wb\") as f:\n",
263
+ " torch.onnx.export(\n",
264
+ " onnx_model,\n",
265
+ " tuple(dummy_inputs.values()),\n",
266
+ " f,\n",
267
+ " export_params=True,\n",
268
+ " verbose=False,\n",
269
+ " opset_version=17,\n",
270
+ " do_constant_folding=True,\n",
271
+ " input_names=list(dummy_inputs.keys()),\n",
272
+ " output_names=output_names,\n",
273
+ " dynamic_axes=dynamic_axes,\n",
274
+ " ) "
275
+ ]
276
+ },
277
+ {
278
+ "cell_type": "markdown",
279
+ "id": "c450cf1a",
280
+ "metadata": {},
281
+ "source": [
282
+ "If desired, the model can additionally be quantized and optimized. We find this improves web runtime significantly for negligible change in qualitative performance. Run the next cell to quantize the model, or skip to the next section otherwise."
283
+ ]
284
+ },
285
+ {
286
+ "cell_type": "code",
287
+ "execution_count": null,
288
+ "id": "235d39fe",
289
+ "metadata": {},
290
+ "outputs": [],
291
+ "source": [
292
+ "onnx_model_quantized_path = \"sam_onnx_quantized_example.onnx\"\n",
293
+ "quantize_dynamic(\n",
294
+ " model_input=onnx_model_path,\n",
295
+ " model_output=onnx_model_quantized_path,\n",
296
+ " optimize_model=True,\n",
297
+ " per_channel=False,\n",
298
+ " reduce_range=False,\n",
299
+ " weight_type=QuantType.QUInt8,\n",
300
+ ")\n",
301
+ "onnx_model_path = onnx_model_quantized_path"
302
+ ]
303
+ },
304
+ {
305
+ "cell_type": "markdown",
306
+ "id": "927a928b",
307
+ "metadata": {},
308
+ "source": [
309
+ "## Example Image"
310
+ ]
311
+ },
312
+ {
313
+ "cell_type": "code",
314
+ "execution_count": null,
315
+ "id": "6be6eb55",
316
+ "metadata": {},
317
+ "outputs": [],
318
+ "source": [
319
+ "image = cv2.imread('images/truck.jpg')\n",
320
+ "image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)"
321
+ ]
322
+ },
323
+ {
324
+ "cell_type": "code",
325
+ "execution_count": null,
326
+ "id": "b7e9a27a",
327
+ "metadata": {},
328
+ "outputs": [],
329
+ "source": [
330
+ "plt.figure(figsize=(10,10))\n",
331
+ "plt.imshow(image)\n",
332
+ "plt.axis('on')\n",
333
+ "plt.show()"
334
+ ]
335
+ },
336
+ {
337
+ "cell_type": "markdown",
338
+ "id": "027b177b",
339
+ "metadata": {},
340
+ "source": [
341
+ "## Using an ONNX model"
342
+ ]
343
+ },
344
+ {
345
+ "cell_type": "markdown",
346
+ "id": "778d4593",
347
+ "metadata": {},
348
+ "source": [
349
+ "Here as an example, we use `onnxruntime` in python on CPU to execute the ONNX model. However, any platform that supports an ONNX runtime could be used in principle. Launch the runtime session below:"
350
+ ]
351
+ },
352
+ {
353
+ "cell_type": "code",
354
+ "execution_count": null,
355
+ "id": "9689b1bf",
356
+ "metadata": {},
357
+ "outputs": [],
358
+ "source": [
359
+ "ort_session = onnxruntime.InferenceSession(onnx_model_path)"
360
+ ]
361
+ },
362
+ {
363
+ "cell_type": "markdown",
364
+ "id": "7708ead6",
365
+ "metadata": {},
366
+ "source": [
367
+ "To use the ONNX model, the image must first be pre-processed using the SAM image encoder. This is a heavier weight process best performed on GPU. SamPredictor can be used as normal, then `.get_image_embedding()` will retreive the intermediate features."
368
+ ]
369
+ },
370
+ {
371
+ "cell_type": "code",
372
+ "execution_count": null,
373
+ "id": "26e067b4",
374
+ "metadata": {},
375
+ "outputs": [],
376
+ "source": [
377
+ "sam.to(device='cuda')\n",
378
+ "predictor = SamPredictor(sam)"
379
+ ]
380
+ },
381
+ {
382
+ "cell_type": "code",
383
+ "execution_count": null,
384
+ "id": "7ad3f0d6",
385
+ "metadata": {},
386
+ "outputs": [],
387
+ "source": [
388
+ "predictor.set_image(image)"
389
+ ]
390
+ },
391
+ {
392
+ "cell_type": "code",
393
+ "execution_count": null,
394
+ "id": "8a6f0f07",
395
+ "metadata": {},
396
+ "outputs": [],
397
+ "source": [
398
+ "image_embedding = predictor.get_image_embedding().cpu().numpy()"
399
+ ]
400
+ },
401
+ {
402
+ "cell_type": "code",
403
+ "execution_count": null,
404
+ "id": "5e112f33",
405
+ "metadata": {},
406
+ "outputs": [],
407
+ "source": [
408
+ "image_embedding.shape"
409
+ ]
410
+ },
411
+ {
412
+ "cell_type": "markdown",
413
+ "id": "6337b654",
414
+ "metadata": {},
415
+ "source": [
416
+ "The ONNX model has a different input signature than `SamPredictor.predict`. The following inputs must all be supplied. Note the special cases for both point and mask inputs. All inputs are `np.float32`.\n",
417
+ "* `image_embeddings`: The image embedding from `predictor.get_image_embedding()`. Has a batch index of length 1.\n",
418
+ "* `point_coords`: Coordinates of sparse input prompts, corresponding to both point inputs and box inputs. Boxes are encoded using two points, one for the top-left corner and one for the bottom-right corner. *Coordinates must already be transformed to long-side 1024.* Has a batch index of length 1.\n",
419
+ "* `point_labels`: Labels for the sparse input prompts. 0 is a negative input point, 1 is a positive input point, 2 is a top-left box corner, 3 is a bottom-right box corner, and -1 is a padding point. *If there is no box input, a single padding point with label -1 and coordinates (0.0, 0.0) should be concatenated.*\n",
420
+ "* `mask_input`: A mask input to the model with shape 1x1x256x256. This must be supplied even if there is no mask input. In this case, it can just be zeros.\n",
421
+ "* `has_mask_input`: An indicator for the mask input. 1 indicates a mask input, 0 indicates no mask input.\n",
422
+ "* `orig_im_size`: The size of the input image in (H,W) format, before any transformation. \n",
423
+ "\n",
424
+ "Additionally, the ONNX model does not threshold the output mask logits. To obtain a binary mask, threshold at `sam.mask_threshold` (equal to 0.0)."
425
+ ]
426
+ },
427
+ {
428
+ "cell_type": "markdown",
429
+ "id": "bf5a9f55",
430
+ "metadata": {},
431
+ "source": [
432
+ "### Example point input"
433
+ ]
434
+ },
435
+ {
436
+ "cell_type": "code",
437
+ "execution_count": null,
438
+ "id": "1c0deef0",
439
+ "metadata": {},
440
+ "outputs": [],
441
+ "source": [
442
+ "input_point = np.array([[500, 375]])\n",
443
+ "input_label = np.array([1])"
444
+ ]
445
+ },
446
+ {
447
+ "cell_type": "markdown",
448
+ "id": "7256394c",
449
+ "metadata": {},
450
+ "source": [
451
+ "Add a batch index, concatenate a padding point, and transform."
452
+ ]
453
+ },
454
+ {
455
+ "cell_type": "code",
456
+ "execution_count": null,
457
+ "id": "4f69903e",
458
+ "metadata": {},
459
+ "outputs": [],
460
+ "source": [
461
+ "onnx_coord = np.concatenate([input_point, np.array([[0.0, 0.0]])], axis=0)[None, :, :]\n",
462
+ "onnx_label = np.concatenate([input_label, np.array([-1])], axis=0)[None, :].astype(np.float32)\n",
463
+ "\n",
464
+ "onnx_coord = predictor.transform.apply_coords(onnx_coord, image.shape[:2]).astype(np.float32)\n"
465
+ ]
466
+ },
467
+ {
468
+ "cell_type": "markdown",
469
+ "id": "b188dc53",
470
+ "metadata": {},
471
+ "source": [
472
+ "Create an empty mask input and an indicator for no mask."
473
+ ]
474
+ },
475
+ {
476
+ "cell_type": "code",
477
+ "execution_count": null,
478
+ "id": "5cb52bcf",
479
+ "metadata": {},
480
+ "outputs": [],
481
+ "source": [
482
+ "onnx_mask_input = np.zeros((1, 1, 256, 256), dtype=np.float32)\n",
483
+ "onnx_has_mask_input = np.zeros(1, dtype=np.float32)"
484
+ ]
485
+ },
486
+ {
487
+ "cell_type": "markdown",
488
+ "id": "a99c2cc5",
489
+ "metadata": {},
490
+ "source": [
491
+ "Package the inputs to run in the onnx model"
492
+ ]
493
+ },
494
+ {
495
+ "cell_type": "code",
496
+ "execution_count": null,
497
+ "id": "b1d7ea11",
498
+ "metadata": {},
499
+ "outputs": [],
500
+ "source": [
501
+ "ort_inputs = {\n",
502
+ " \"image_embeddings\": image_embedding,\n",
503
+ " \"point_coords\": onnx_coord,\n",
504
+ " \"point_labels\": onnx_label,\n",
505
+ " \"mask_input\": onnx_mask_input,\n",
506
+ " \"has_mask_input\": onnx_has_mask_input,\n",
507
+ " \"orig_im_size\": np.array(image.shape[:2], dtype=np.float32)\n",
508
+ "}"
509
+ ]
510
+ },
511
+ {
512
+ "cell_type": "markdown",
513
+ "id": "4b6409c9",
514
+ "metadata": {},
515
+ "source": [
516
+ "Predict a mask and threshold it."
517
+ ]
518
+ },
519
+ {
520
+ "cell_type": "code",
521
+ "execution_count": null,
522
+ "id": "dc4cc082",
523
+ "metadata": {
524
+ "scrolled": false
525
+ },
526
+ "outputs": [],
527
+ "source": [
528
+ "masks, _, low_res_logits = ort_session.run(None, ort_inputs)\n",
529
+ "masks = masks > predictor.model.mask_threshold"
530
+ ]
531
+ },
532
+ {
533
+ "cell_type": "code",
534
+ "execution_count": null,
535
+ "id": "d778a8fb",
536
+ "metadata": {},
537
+ "outputs": [],
538
+ "source": [
539
+ "masks.shape"
540
+ ]
541
+ },
542
+ {
543
+ "cell_type": "code",
544
+ "execution_count": null,
545
+ "id": "badb1175",
546
+ "metadata": {},
547
+ "outputs": [],
548
+ "source": [
549
+ "plt.figure(figsize=(10,10))\n",
550
+ "plt.imshow(image)\n",
551
+ "show_mask(masks, plt.gca())\n",
552
+ "show_points(input_point, input_label, plt.gca())\n",
553
+ "plt.axis('off')\n",
554
+ "plt.show() "
555
+ ]
556
+ },
557
+ {
558
+ "cell_type": "markdown",
559
+ "id": "1f1d4d15",
560
+ "metadata": {},
561
+ "source": [
562
+ "### Example mask input"
563
+ ]
564
+ },
565
+ {
566
+ "cell_type": "code",
567
+ "execution_count": null,
568
+ "id": "b319da82",
569
+ "metadata": {},
570
+ "outputs": [],
571
+ "source": [
572
+ "input_point = np.array([[500, 375], [1125, 625]])\n",
573
+ "input_label = np.array([1, 1])\n",
574
+ "\n",
575
+ "# Use the mask output from the previous run. It is already in the correct form for input to the ONNX model.\n",
576
+ "onnx_mask_input = low_res_logits"
577
+ ]
578
+ },
579
+ {
580
+ "cell_type": "markdown",
581
+ "id": "b1823b37",
582
+ "metadata": {},
583
+ "source": [
584
+ "Transform the points as in the previous example."
585
+ ]
586
+ },
587
+ {
588
+ "cell_type": "code",
589
+ "execution_count": null,
590
+ "id": "8885130f",
591
+ "metadata": {},
592
+ "outputs": [],
593
+ "source": [
594
+ "onnx_coord = np.concatenate([input_point, np.array([[0.0, 0.0]])], axis=0)[None, :, :]\n",
595
+ "onnx_label = np.concatenate([input_label, np.array([-1])], axis=0)[None, :].astype(np.float32)\n",
596
+ "\n",
597
+ "onnx_coord = predictor.transform.apply_coords(onnx_coord, image.shape[:2]).astype(np.float32)"
598
+ ]
599
+ },
600
+ {
601
+ "cell_type": "markdown",
602
+ "id": "28e47b69",
603
+ "metadata": {},
604
+ "source": [
605
+ "The `has_mask_input` indicator is now 1."
606
+ ]
607
+ },
608
+ {
609
+ "cell_type": "code",
610
+ "execution_count": null,
611
+ "id": "3ab4483a",
612
+ "metadata": {},
613
+ "outputs": [],
614
+ "source": [
615
+ "onnx_has_mask_input = np.ones(1, dtype=np.float32)"
616
+ ]
617
+ },
618
+ {
619
+ "cell_type": "markdown",
620
+ "id": "d3781955",
621
+ "metadata": {},
622
+ "source": [
623
+ "Package inputs, then predict and threshold the mask."
624
+ ]
625
+ },
626
+ {
627
+ "cell_type": "code",
628
+ "execution_count": null,
629
+ "id": "0c1ec096",
630
+ "metadata": {},
631
+ "outputs": [],
632
+ "source": [
633
+ "ort_inputs = {\n",
634
+ " \"image_embeddings\": image_embedding,\n",
635
+ " \"point_coords\": onnx_coord,\n",
636
+ " \"point_labels\": onnx_label,\n",
637
+ " \"mask_input\": onnx_mask_input,\n",
638
+ " \"has_mask_input\": onnx_has_mask_input,\n",
639
+ " \"orig_im_size\": np.array(image.shape[:2], dtype=np.float32)\n",
640
+ "}\n",
641
+ "\n",
642
+ "masks, _, _ = ort_session.run(None, ort_inputs)\n",
643
+ "masks = masks > predictor.model.mask_threshold"
644
+ ]
645
+ },
646
+ {
647
+ "cell_type": "code",
648
+ "execution_count": null,
649
+ "id": "1e36554b",
650
+ "metadata": {},
651
+ "outputs": [],
652
+ "source": [
653
+ "plt.figure(figsize=(10,10))\n",
654
+ "plt.imshow(image)\n",
655
+ "show_mask(masks, plt.gca())\n",
656
+ "show_points(input_point, input_label, plt.gca())\n",
657
+ "plt.axis('off')\n",
658
+ "plt.show() "
659
+ ]
660
+ },
661
+ {
662
+ "cell_type": "markdown",
663
+ "id": "2ef211d0",
664
+ "metadata": {},
665
+ "source": [
666
+ "### Example box and point input"
667
+ ]
668
+ },
669
+ {
670
+ "cell_type": "code",
671
+ "execution_count": null,
672
+ "id": "51e58d2e",
673
+ "metadata": {},
674
+ "outputs": [],
675
+ "source": [
676
+ "input_box = np.array([425, 600, 700, 875])\n",
677
+ "input_point = np.array([[575, 750]])\n",
678
+ "input_label = np.array([0])"
679
+ ]
680
+ },
681
+ {
682
+ "cell_type": "markdown",
683
+ "id": "6e119dcb",
684
+ "metadata": {},
685
+ "source": [
686
+ "Add a batch index, concatenate a box and point inputs, add the appropriate labels for the box corners, and transform. There is no padding point since the input includes a box input."
687
+ ]
688
+ },
689
+ {
690
+ "cell_type": "code",
691
+ "execution_count": null,
692
+ "id": "bfbe4911",
693
+ "metadata": {},
694
+ "outputs": [],
695
+ "source": [
696
+ "onnx_box_coords = input_box.reshape(2, 2)\n",
697
+ "onnx_box_labels = np.array([2,3])\n",
698
+ "\n",
699
+ "onnx_coord = np.concatenate([input_point, onnx_box_coords], axis=0)[None, :, :]\n",
700
+ "onnx_label = np.concatenate([input_label, onnx_box_labels], axis=0)[None, :].astype(np.float32)\n",
701
+ "\n",
702
+ "onnx_coord = predictor.transform.apply_coords(onnx_coord, image.shape[:2]).astype(np.float32)"
703
+ ]
704
+ },
705
+ {
706
+ "cell_type": "markdown",
707
+ "id": "65edabd2",
708
+ "metadata": {},
709
+ "source": [
710
+ "Package inputs, then predict and threshold the mask."
711
+ ]
712
+ },
713
+ {
714
+ "cell_type": "code",
715
+ "execution_count": null,
716
+ "id": "2abfba56",
717
+ "metadata": {},
718
+ "outputs": [],
719
+ "source": [
720
+ "onnx_mask_input = np.zeros((1, 1, 256, 256), dtype=np.float32)\n",
721
+ "onnx_has_mask_input = np.zeros(1, dtype=np.float32)\n",
722
+ "\n",
723
+ "ort_inputs = {\n",
724
+ " \"image_embeddings\": image_embedding,\n",
725
+ " \"point_coords\": onnx_coord,\n",
726
+ " \"point_labels\": onnx_label,\n",
727
+ " \"mask_input\": onnx_mask_input,\n",
728
+ " \"has_mask_input\": onnx_has_mask_input,\n",
729
+ " \"orig_im_size\": np.array(image.shape[:2], dtype=np.float32)\n",
730
+ "}\n",
731
+ "\n",
732
+ "masks, _, _ = ort_session.run(None, ort_inputs)\n",
733
+ "masks = masks > predictor.model.mask_threshold"
734
+ ]
735
+ },
736
+ {
737
+ "cell_type": "code",
738
+ "execution_count": null,
739
+ "id": "8301bf33",
740
+ "metadata": {},
741
+ "outputs": [],
742
+ "source": [
743
+ "plt.figure(figsize=(10, 10))\n",
744
+ "plt.imshow(image)\n",
745
+ "show_mask(masks[0], plt.gca())\n",
746
+ "show_box(input_box, plt.gca())\n",
747
+ "show_points(input_point, input_label, plt.gca())\n",
748
+ "plt.axis('off')\n",
749
+ "plt.show()"
750
+ ]
751
+ }
752
+ ],
753
+ "metadata": {
754
+ "kernelspec": {
755
+ "display_name": "Python 3 (ipykernel)",
756
+ "language": "python",
757
+ "name": "python3"
758
+ },
759
+ "language_info": {
760
+ "codemirror_mode": {
761
+ "name": "ipython",
762
+ "version": 3
763
+ },
764
+ "file_extension": ".py",
765
+ "mimetype": "text/x-python",
766
+ "name": "python",
767
+ "nbconvert_exporter": "python",
768
+ "pygments_lexer": "ipython3",
769
+ "version": "3.8.0"
770
+ }
771
+ },
772
+ "nbformat": 4,
773
+ "nbformat_minor": 5
774
+ }
segment-anything/content/segment-anything/notebooks/predictor_example.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
segment-anything/content/segment-anything/scripts/amg.py ADDED
@@ -0,0 +1,238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import cv2 # type: ignore
8
+
9
+ from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
10
+
11
+ import argparse
12
+ import json
13
+ import os
14
+ from typing import Any, Dict, List
15
+
16
+ parser = argparse.ArgumentParser(
17
+ description=(
18
+ "Runs automatic mask generation on an input image or directory of images, "
19
+ "and outputs masks as either PNGs or COCO-style RLEs. Requires open-cv, "
20
+ "as well as pycocotools if saving in RLE format."
21
+ )
22
+ )
23
+
24
+ parser.add_argument(
25
+ "--input",
26
+ type=str,
27
+ required=True,
28
+ help="Path to either a single input image or folder of images.",
29
+ )
30
+
31
+ parser.add_argument(
32
+ "--output",
33
+ type=str,
34
+ required=True,
35
+ help=(
36
+ "Path to the directory where masks will be output. Output will be either a folder "
37
+ "of PNGs per image or a single json with COCO-style masks."
38
+ ),
39
+ )
40
+
41
+ parser.add_argument(
42
+ "--model-type",
43
+ type=str,
44
+ required=True,
45
+ help="The type of model to load, in ['default', 'vit_h', 'vit_l', 'vit_b']",
46
+ )
47
+
48
+ parser.add_argument(
49
+ "--checkpoint",
50
+ type=str,
51
+ required=True,
52
+ help="The path to the SAM checkpoint to use for mask generation.",
53
+ )
54
+
55
+ parser.add_argument("--device", type=str, default="cuda", help="The device to run generation on.")
56
+
57
+ parser.add_argument(
58
+ "--convert-to-rle",
59
+ action="store_true",
60
+ help=(
61
+ "Save masks as COCO RLEs in a single json instead of as a folder of PNGs. "
62
+ "Requires pycocotools."
63
+ ),
64
+ )
65
+
66
+ amg_settings = parser.add_argument_group("AMG Settings")
67
+
68
+ amg_settings.add_argument(
69
+ "--points-per-side",
70
+ type=int,
71
+ default=None,
72
+ help="Generate masks by sampling a grid over the image with this many points to a side.",
73
+ )
74
+
75
+ amg_settings.add_argument(
76
+ "--points-per-batch",
77
+ type=int,
78
+ default=None,
79
+ help="How many input points to process simultaneously in one batch.",
80
+ )
81
+
82
+ amg_settings.add_argument(
83
+ "--pred-iou-thresh",
84
+ type=float,
85
+ default=None,
86
+ help="Exclude masks with a predicted score from the model that is lower than this threshold.",
87
+ )
88
+
89
+ amg_settings.add_argument(
90
+ "--stability-score-thresh",
91
+ type=float,
92
+ default=None,
93
+ help="Exclude masks with a stability score lower than this threshold.",
94
+ )
95
+
96
+ amg_settings.add_argument(
97
+ "--stability-score-offset",
98
+ type=float,
99
+ default=None,
100
+ help="Larger values perturb the mask more when measuring stability score.",
101
+ )
102
+
103
+ amg_settings.add_argument(
104
+ "--box-nms-thresh",
105
+ type=float,
106
+ default=None,
107
+ help="The overlap threshold for excluding a duplicate mask.",
108
+ )
109
+
110
+ amg_settings.add_argument(
111
+ "--crop-n-layers",
112
+ type=int,
113
+ default=None,
114
+ help=(
115
+ "If >0, mask generation is run on smaller crops of the image to generate more masks. "
116
+ "The value sets how many different scales to crop at."
117
+ ),
118
+ )
119
+
120
+ amg_settings.add_argument(
121
+ "--crop-nms-thresh",
122
+ type=float,
123
+ default=None,
124
+ help="The overlap threshold for excluding duplicate masks across different crops.",
125
+ )
126
+
127
+ amg_settings.add_argument(
128
+ "--crop-overlap-ratio",
129
+ type=int,
130
+ default=None,
131
+ help="Larger numbers mean image crops will overlap more.",
132
+ )
133
+
134
+ amg_settings.add_argument(
135
+ "--crop-n-points-downscale-factor",
136
+ type=int,
137
+ default=None,
138
+ help="The number of points-per-side in each layer of crop is reduced by this factor.",
139
+ )
140
+
141
+ amg_settings.add_argument(
142
+ "--min-mask-region-area",
143
+ type=int,
144
+ default=None,
145
+ help=(
146
+ "Disconnected mask regions or holes with area smaller than this value "
147
+ "in pixels are removed by postprocessing."
148
+ ),
149
+ )
150
+
151
+
152
+ def write_masks_to_folder(masks: List[Dict[str, Any]], path: str) -> None:
153
+ header = "id,area,bbox_x0,bbox_y0,bbox_w,bbox_h,point_input_x,point_input_y,predicted_iou,stability_score,crop_box_x0,crop_box_y0,crop_box_w,crop_box_h" # noqa
154
+ metadata = [header]
155
+ for i, mask_data in enumerate(masks):
156
+ mask = mask_data["segmentation"]
157
+ filename = f"{i}.png"
158
+ cv2.imwrite(os.path.join(path, filename), mask * 255)
159
+ mask_metadata = [
160
+ str(i),
161
+ str(mask_data["area"]),
162
+ *[str(x) for x in mask_data["bbox"]],
163
+ *[str(x) for x in mask_data["point_coords"][0]],
164
+ str(mask_data["predicted_iou"]),
165
+ str(mask_data["stability_score"]),
166
+ *[str(x) for x in mask_data["crop_box"]],
167
+ ]
168
+ row = ",".join(mask_metadata)
169
+ metadata.append(row)
170
+ metadata_path = os.path.join(path, "metadata.csv")
171
+ with open(metadata_path, "w") as f:
172
+ f.write("\n".join(metadata))
173
+
174
+ return
175
+
176
+
177
+ def get_amg_kwargs(args):
178
+ amg_kwargs = {
179
+ "points_per_side": args.points_per_side,
180
+ "points_per_batch": args.points_per_batch,
181
+ "pred_iou_thresh": args.pred_iou_thresh,
182
+ "stability_score_thresh": args.stability_score_thresh,
183
+ "stability_score_offset": args.stability_score_offset,
184
+ "box_nms_thresh": args.box_nms_thresh,
185
+ "crop_n_layers": args.crop_n_layers,
186
+ "crop_nms_thresh": args.crop_nms_thresh,
187
+ "crop_overlap_ratio": args.crop_overlap_ratio,
188
+ "crop_n_points_downscale_factor": args.crop_n_points_downscale_factor,
189
+ "min_mask_region_area": args.min_mask_region_area,
190
+ }
191
+ amg_kwargs = {k: v for k, v in amg_kwargs.items() if v is not None}
192
+ return amg_kwargs
193
+
194
+
195
+ def main(args: argparse.Namespace) -> None:
196
+ print("Loading model...")
197
+ sam = sam_model_registry[args.model_type](checkpoint=args.checkpoint)
198
+ _ = sam.to(device=args.device)
199
+ output_mode = "coco_rle" if args.convert_to_rle else "binary_mask"
200
+ amg_kwargs = get_amg_kwargs(args)
201
+ generator = SamAutomaticMaskGenerator(sam, output_mode=output_mode, **amg_kwargs)
202
+
203
+ if not os.path.isdir(args.input):
204
+ targets = [args.input]
205
+ else:
206
+ targets = [
207
+ f for f in os.listdir(args.input) if not os.path.isdir(os.path.join(args.input, f))
208
+ ]
209
+ targets = [os.path.join(args.input, f) for f in targets]
210
+
211
+ os.makedirs(args.output, exist_ok=True)
212
+
213
+ for t in targets:
214
+ print(f"Processing '{t}'...")
215
+ image = cv2.imread(t)
216
+ if image is None:
217
+ print(f"Could not load '{t}' as an image, skipping...")
218
+ continue
219
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
220
+
221
+ masks = generator.generate(image)
222
+
223
+ base = os.path.basename(t)
224
+ base = os.path.splitext(base)[0]
225
+ save_base = os.path.join(args.output, base)
226
+ if output_mode == "binary_mask":
227
+ os.makedirs(save_base, exist_ok=False)
228
+ write_masks_to_folder(masks, save_base)
229
+ else:
230
+ save_file = save_base + ".json"
231
+ with open(save_file, "w") as f:
232
+ json.dump(masks, f)
233
+ print("Done!")
234
+
235
+
236
+ if __name__ == "__main__":
237
+ args = parser.parse_args()
238
+ main(args)
segment-anything/content/segment-anything/scripts/export_onnx_model.py ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import torch
8
+
9
+ from segment_anything import sam_model_registry
10
+ from segment_anything.utils.onnx import SamOnnxModel
11
+
12
+ import argparse
13
+ import warnings
14
+
15
+ try:
16
+ import onnxruntime # type: ignore
17
+
18
+ onnxruntime_exists = True
19
+ except ImportError:
20
+ onnxruntime_exists = False
21
+
22
+ parser = argparse.ArgumentParser(
23
+ description="Export the SAM prompt encoder and mask decoder to an ONNX model."
24
+ )
25
+
26
+ parser.add_argument(
27
+ "--checkpoint", type=str, required=True, help="The path to the SAM model checkpoint."
28
+ )
29
+
30
+ parser.add_argument(
31
+ "--output", type=str, required=True, help="The filename to save the ONNX model to."
32
+ )
33
+
34
+ parser.add_argument(
35
+ "--model-type",
36
+ type=str,
37
+ required=True,
38
+ help="In ['default', 'vit_h', 'vit_l', 'vit_b']. Which type of SAM model to export.",
39
+ )
40
+
41
+ parser.add_argument(
42
+ "--return-single-mask",
43
+ action="store_true",
44
+ help=(
45
+ "If true, the exported ONNX model will only return the best mask, "
46
+ "instead of returning multiple masks. For high resolution images "
47
+ "this can improve runtime when upscaling masks is expensive."
48
+ ),
49
+ )
50
+
51
+ parser.add_argument(
52
+ "--opset",
53
+ type=int,
54
+ default=17,
55
+ help="The ONNX opset version to use. Must be >=11",
56
+ )
57
+
58
+ parser.add_argument(
59
+ "--quantize-out",
60
+ type=str,
61
+ default=None,
62
+ help=(
63
+ "If set, will quantize the model and save it with this name. "
64
+ "Quantization is performed with quantize_dynamic from onnxruntime.quantization.quantize."
65
+ ),
66
+ )
67
+
68
+ parser.add_argument(
69
+ "--gelu-approximate",
70
+ action="store_true",
71
+ help=(
72
+ "Replace GELU operations with approximations using tanh. Useful "
73
+ "for some runtimes that have slow or unimplemented erf ops, used in GELU."
74
+ ),
75
+ )
76
+
77
+ parser.add_argument(
78
+ "--use-stability-score",
79
+ action="store_true",
80
+ help=(
81
+ "Replaces the model's predicted mask quality score with the stability "
82
+ "score calculated on the low resolution masks using an offset of 1.0. "
83
+ ),
84
+ )
85
+
86
+ parser.add_argument(
87
+ "--return-extra-metrics",
88
+ action="store_true",
89
+ help=(
90
+ "The model will return five results: (masks, scores, stability_scores, "
91
+ "areas, low_res_logits) instead of the usual three. This can be "
92
+ "significantly slower for high resolution outputs."
93
+ ),
94
+ )
95
+
96
+
97
+ def run_export(
98
+ model_type: str,
99
+ checkpoint: str,
100
+ output: str,
101
+ opset: int,
102
+ return_single_mask: bool,
103
+ gelu_approximate: bool = False,
104
+ use_stability_score: bool = False,
105
+ return_extra_metrics=False,
106
+ ):
107
+ print("Loading model...")
108
+ sam = sam_model_registry[model_type](checkpoint=checkpoint)
109
+
110
+ onnx_model = SamOnnxModel(
111
+ model=sam,
112
+ return_single_mask=return_single_mask,
113
+ use_stability_score=use_stability_score,
114
+ return_extra_metrics=return_extra_metrics,
115
+ )
116
+
117
+ if gelu_approximate:
118
+ for n, m in onnx_model.named_modules():
119
+ if isinstance(m, torch.nn.GELU):
120
+ m.approximate = "tanh"
121
+
122
+ dynamic_axes = {
123
+ "point_coords": {1: "num_points"},
124
+ "point_labels": {1: "num_points"},
125
+ }
126
+
127
+ embed_dim = sam.prompt_encoder.embed_dim
128
+ embed_size = sam.prompt_encoder.image_embedding_size
129
+ mask_input_size = [4 * x for x in embed_size]
130
+ dummy_inputs = {
131
+ "image_embeddings": torch.randn(1, embed_dim, *embed_size, dtype=torch.float),
132
+ "point_coords": torch.randint(low=0, high=1024, size=(1, 5, 2), dtype=torch.float),
133
+ "point_labels": torch.randint(low=0, high=4, size=(1, 5), dtype=torch.float),
134
+ "mask_input": torch.randn(1, 1, *mask_input_size, dtype=torch.float),
135
+ "has_mask_input": torch.tensor([1], dtype=torch.float),
136
+ "orig_im_size": torch.tensor([1500, 2250], dtype=torch.float),
137
+ }
138
+
139
+ _ = onnx_model(**dummy_inputs)
140
+
141
+ output_names = ["masks", "iou_predictions", "low_res_masks"]
142
+
143
+ with warnings.catch_warnings():
144
+ warnings.filterwarnings("ignore", category=torch.jit.TracerWarning)
145
+ warnings.filterwarnings("ignore", category=UserWarning)
146
+ with open(output, "wb") as f:
147
+ print(f"Exporting onnx model to {output}...")
148
+ torch.onnx.export(
149
+ onnx_model,
150
+ tuple(dummy_inputs.values()),
151
+ f,
152
+ export_params=True,
153
+ verbose=False,
154
+ opset_version=opset,
155
+ do_constant_folding=True,
156
+ input_names=list(dummy_inputs.keys()),
157
+ output_names=output_names,
158
+ dynamic_axes=dynamic_axes,
159
+ )
160
+
161
+ if onnxruntime_exists:
162
+ ort_inputs = {k: to_numpy(v) for k, v in dummy_inputs.items()}
163
+ # set cpu provider default
164
+ providers = ["CPUExecutionProvider"]
165
+ ort_session = onnxruntime.InferenceSession(output, providers=providers)
166
+ _ = ort_session.run(None, ort_inputs)
167
+ print("Model has successfully been run with ONNXRuntime.")
168
+
169
+
170
+ def to_numpy(tensor):
171
+ return tensor.cpu().numpy()
172
+
173
+
174
+ if __name__ == "__main__":
175
+ args = parser.parse_args()
176
+ run_export(
177
+ model_type=args.model_type,
178
+ checkpoint=args.checkpoint,
179
+ output=args.output,
180
+ opset=args.opset,
181
+ return_single_mask=args.return_single_mask,
182
+ gelu_approximate=args.gelu_approximate,
183
+ use_stability_score=args.use_stability_score,
184
+ return_extra_metrics=args.return_extra_metrics,
185
+ )
186
+
187
+ if args.quantize_out is not None:
188
+ assert onnxruntime_exists, "onnxruntime is required to quantize the model."
189
+ from onnxruntime.quantization import QuantType # type: ignore
190
+ from onnxruntime.quantization.quantize import quantize_dynamic # type: ignore
191
+
192
+ print(f"Quantizing model and writing to {args.quantize_out}...")
193
+ quantize_dynamic(
194
+ model_input=args.output,
195
+ model_output=args.quantize_out,
196
+ optimize_model=True,
197
+ per_channel=False,
198
+ reduce_range=False,
199
+ weight_type=QuantType.QUInt8,
200
+ )
201
+ print("Done!")
segment-anything/content/segment-anything/segment_anything/__init__.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from .build_sam import (
8
+ build_sam,
9
+ build_sam_vit_h,
10
+ build_sam_vit_l,
11
+ build_sam_vit_b,
12
+ sam_model_registry,
13
+ )
14
+ from .predictor import SamPredictor
15
+ from .automatic_mask_generator import SamAutomaticMaskGenerator
segment-anything/content/segment-anything/segment_anything/automatic_mask_generator.py ADDED
@@ -0,0 +1,372 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import numpy as np
8
+ import torch
9
+ from torchvision.ops.boxes import batched_nms, box_area # type: ignore
10
+
11
+ from typing import Any, Dict, List, Optional, Tuple
12
+
13
+ from .modeling import Sam
14
+ from .predictor import SamPredictor
15
+ from .utils.amg import (
16
+ MaskData,
17
+ area_from_rle,
18
+ batch_iterator,
19
+ batched_mask_to_box,
20
+ box_xyxy_to_xywh,
21
+ build_all_layer_point_grids,
22
+ calculate_stability_score,
23
+ coco_encode_rle,
24
+ generate_crop_boxes,
25
+ is_box_near_crop_edge,
26
+ mask_to_rle_pytorch,
27
+ remove_small_regions,
28
+ rle_to_mask,
29
+ uncrop_boxes_xyxy,
30
+ uncrop_masks,
31
+ uncrop_points,
32
+ )
33
+
34
+
35
+ class SamAutomaticMaskGenerator:
36
+ def __init__(
37
+ self,
38
+ model: Sam,
39
+ points_per_side: Optional[int] = 32,
40
+ points_per_batch: int = 64,
41
+ pred_iou_thresh: float = 0.88,
42
+ stability_score_thresh: float = 0.95,
43
+ stability_score_offset: float = 1.0,
44
+ box_nms_thresh: float = 0.7,
45
+ crop_n_layers: int = 0,
46
+ crop_nms_thresh: float = 0.7,
47
+ crop_overlap_ratio: float = 512 / 1500,
48
+ crop_n_points_downscale_factor: int = 1,
49
+ point_grids: Optional[List[np.ndarray]] = None,
50
+ min_mask_region_area: int = 0,
51
+ output_mode: str = "binary_mask",
52
+ ) -> None:
53
+ """
54
+ Using a SAM model, generates masks for the entire image.
55
+ Generates a grid of point prompts over the image, then filters
56
+ low quality and duplicate masks. The default settings are chosen
57
+ for SAM with a ViT-H backbone.
58
+
59
+ Arguments:
60
+ model (Sam): The SAM model to use for mask prediction.
61
+ points_per_side (int or None): The number of points to be sampled
62
+ along one side of the image. The total number of points is
63
+ points_per_side**2. If None, 'point_grids' must provide explicit
64
+ point sampling.
65
+ points_per_batch (int): Sets the number of points run simultaneously
66
+ by the model. Higher numbers may be faster but use more GPU memory.
67
+ pred_iou_thresh (float): A filtering threshold in [0,1], using the
68
+ model's predicted mask quality.
69
+ stability_score_thresh (float): A filtering threshold in [0,1], using
70
+ the stability of the mask under changes to the cutoff used to binarize
71
+ the model's mask predictions.
72
+ stability_score_offset (float): The amount to shift the cutoff when
73
+ calculated the stability score.
74
+ box_nms_thresh (float): The box IoU cutoff used by non-maximal
75
+ suppression to filter duplicate masks.
76
+ crop_n_layers (int): If >0, mask prediction will be run again on
77
+ crops of the image. Sets the number of layers to run, where each
78
+ layer has 2**i_layer number of image crops.
79
+ crop_nms_thresh (float): The box IoU cutoff used by non-maximal
80
+ suppression to filter duplicate masks between different crops.
81
+ crop_overlap_ratio (float): Sets the degree to which crops overlap.
82
+ In the first crop layer, crops will overlap by this fraction of
83
+ the image length. Later layers with more crops scale down this overlap.
84
+ crop_n_points_downscale_factor (int): The number of points-per-side
85
+ sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
86
+ point_grids (list(np.ndarray) or None): A list over explicit grids
87
+ of points used for sampling, normalized to [0,1]. The nth grid in the
88
+ list is used in the nth crop layer. Exclusive with points_per_side.
89
+ min_mask_region_area (int): If >0, postprocessing will be applied
90
+ to remove disconnected regions and holes in masks with area smaller
91
+ than min_mask_region_area. Requires opencv.
92
+ output_mode (str): The form masks are returned in. Can be 'binary_mask',
93
+ 'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools.
94
+ For large resolutions, 'binary_mask' may consume large amounts of
95
+ memory.
96
+ """
97
+
98
+ assert (points_per_side is None) != (
99
+ point_grids is None
100
+ ), "Exactly one of points_per_side or point_grid must be provided."
101
+ if points_per_side is not None:
102
+ self.point_grids = build_all_layer_point_grids(
103
+ points_per_side,
104
+ crop_n_layers,
105
+ crop_n_points_downscale_factor,
106
+ )
107
+ elif point_grids is not None:
108
+ self.point_grids = point_grids
109
+ else:
110
+ raise ValueError("Can't have both points_per_side and point_grid be None.")
111
+
112
+ assert output_mode in [
113
+ "binary_mask",
114
+ "uncompressed_rle",
115
+ "coco_rle",
116
+ ], f"Unknown output_mode {output_mode}."
117
+ if output_mode == "coco_rle":
118
+ from pycocotools import mask as mask_utils # type: ignore # noqa: F401
119
+
120
+ if min_mask_region_area > 0:
121
+ import cv2 # type: ignore # noqa: F401
122
+
123
+ self.predictor = SamPredictor(model)
124
+ self.points_per_batch = points_per_batch
125
+ self.pred_iou_thresh = pred_iou_thresh
126
+ self.stability_score_thresh = stability_score_thresh
127
+ self.stability_score_offset = stability_score_offset
128
+ self.box_nms_thresh = box_nms_thresh
129
+ self.crop_n_layers = crop_n_layers
130
+ self.crop_nms_thresh = crop_nms_thresh
131
+ self.crop_overlap_ratio = crop_overlap_ratio
132
+ self.crop_n_points_downscale_factor = crop_n_points_downscale_factor
133
+ self.min_mask_region_area = min_mask_region_area
134
+ self.output_mode = output_mode
135
+
136
+ @torch.no_grad()
137
+ def generate(self, image: np.ndarray) -> List[Dict[str, Any]]:
138
+ """
139
+ Generates masks for the given image.
140
+
141
+ Arguments:
142
+ image (np.ndarray): The image to generate masks for, in HWC uint8 format.
143
+
144
+ Returns:
145
+ list(dict(str, any)): A list over records for masks. Each record is
146
+ a dict containing the following keys:
147
+ segmentation (dict(str, any) or np.ndarray): The mask. If
148
+ output_mode='binary_mask', is an array of shape HW. Otherwise,
149
+ is a dictionary containing the RLE.
150
+ bbox (list(float)): The box around the mask, in XYWH format.
151
+ area (int): The area in pixels of the mask.
152
+ predicted_iou (float): The model's own prediction of the mask's
153
+ quality. This is filtered by the pred_iou_thresh parameter.
154
+ point_coords (list(list(float))): The point coordinates input
155
+ to the model to generate this mask.
156
+ stability_score (float): A measure of the mask's quality. This
157
+ is filtered on using the stability_score_thresh parameter.
158
+ crop_box (list(float)): The crop of the image used to generate
159
+ the mask, given in XYWH format.
160
+ """
161
+
162
+ # Generate masks
163
+ mask_data = self._generate_masks(image)
164
+
165
+ # Filter small disconnected regions and holes in masks
166
+ if self.min_mask_region_area > 0:
167
+ mask_data = self.postprocess_small_regions(
168
+ mask_data,
169
+ self.min_mask_region_area,
170
+ max(self.box_nms_thresh, self.crop_nms_thresh),
171
+ )
172
+
173
+ # Encode masks
174
+ if self.output_mode == "coco_rle":
175
+ mask_data["segmentations"] = [coco_encode_rle(rle) for rle in mask_data["rles"]]
176
+ elif self.output_mode == "binary_mask":
177
+ mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]]
178
+ else:
179
+ mask_data["segmentations"] = mask_data["rles"]
180
+
181
+ # Write mask records
182
+ curr_anns = []
183
+ for idx in range(len(mask_data["segmentations"])):
184
+ ann = {
185
+ "segmentation": mask_data["segmentations"][idx],
186
+ "area": area_from_rle(mask_data["rles"][idx]),
187
+ "bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(),
188
+ "predicted_iou": mask_data["iou_preds"][idx].item(),
189
+ "point_coords": [mask_data["points"][idx].tolist()],
190
+ "stability_score": mask_data["stability_score"][idx].item(),
191
+ "crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(),
192
+ }
193
+ curr_anns.append(ann)
194
+
195
+ return curr_anns
196
+
197
+ def _generate_masks(self, image: np.ndarray) -> MaskData:
198
+ orig_size = image.shape[:2]
199
+ crop_boxes, layer_idxs = generate_crop_boxes(
200
+ orig_size, self.crop_n_layers, self.crop_overlap_ratio
201
+ )
202
+
203
+ # Iterate over image crops
204
+ data = MaskData()
205
+ for crop_box, layer_idx in zip(crop_boxes, layer_idxs):
206
+ crop_data = self._process_crop(image, crop_box, layer_idx, orig_size)
207
+ data.cat(crop_data)
208
+
209
+ # Remove duplicate masks between crops
210
+ if len(crop_boxes) > 1:
211
+ # Prefer masks from smaller crops
212
+ scores = 1 / box_area(data["crop_boxes"])
213
+ scores = scores.to(data["boxes"].device)
214
+ keep_by_nms = batched_nms(
215
+ data["boxes"].float(),
216
+ scores,
217
+ torch.zeros_like(data["boxes"][:, 0]), # categories
218
+ iou_threshold=self.crop_nms_thresh,
219
+ )
220
+ data.filter(keep_by_nms)
221
+
222
+ data.to_numpy()
223
+ return data
224
+
225
+ def _process_crop(
226
+ self,
227
+ image: np.ndarray,
228
+ crop_box: List[int],
229
+ crop_layer_idx: int,
230
+ orig_size: Tuple[int, ...],
231
+ ) -> MaskData:
232
+ # Crop the image and calculate embeddings
233
+ x0, y0, x1, y1 = crop_box
234
+ cropped_im = image[y0:y1, x0:x1, :]
235
+ cropped_im_size = cropped_im.shape[:2]
236
+ self.predictor.set_image(cropped_im)
237
+
238
+ # Get points for this crop
239
+ points_scale = np.array(cropped_im_size)[None, ::-1]
240
+ points_for_image = self.point_grids[crop_layer_idx] * points_scale
241
+
242
+ # Generate masks for this crop in batches
243
+ data = MaskData()
244
+ for (points,) in batch_iterator(self.points_per_batch, points_for_image):
245
+ batch_data = self._process_batch(points, cropped_im_size, crop_box, orig_size)
246
+ data.cat(batch_data)
247
+ del batch_data
248
+ self.predictor.reset_image()
249
+
250
+ # Remove duplicates within this crop.
251
+ keep_by_nms = batched_nms(
252
+ data["boxes"].float(),
253
+ data["iou_preds"],
254
+ torch.zeros_like(data["boxes"][:, 0]), # categories
255
+ iou_threshold=self.box_nms_thresh,
256
+ )
257
+ data.filter(keep_by_nms)
258
+
259
+ # Return to the original image frame
260
+ data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box)
261
+ data["points"] = uncrop_points(data["points"], crop_box)
262
+ data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))])
263
+
264
+ return data
265
+
266
+ def _process_batch(
267
+ self,
268
+ points: np.ndarray,
269
+ im_size: Tuple[int, ...],
270
+ crop_box: List[int],
271
+ orig_size: Tuple[int, ...],
272
+ ) -> MaskData:
273
+ orig_h, orig_w = orig_size
274
+
275
+ # Run model on this batch
276
+ transformed_points = self.predictor.transform.apply_coords(points, im_size)
277
+ in_points = torch.as_tensor(transformed_points, device=self.predictor.device)
278
+ in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device)
279
+ masks, iou_preds, _ = self.predictor.predict_torch(
280
+ in_points[:, None, :],
281
+ in_labels[:, None],
282
+ multimask_output=True,
283
+ return_logits=True,
284
+ )
285
+
286
+ # Serialize predictions and store in MaskData
287
+ data = MaskData(
288
+ masks=masks.flatten(0, 1),
289
+ iou_preds=iou_preds.flatten(0, 1),
290
+ points=torch.as_tensor(points.repeat(masks.shape[1], axis=0)),
291
+ )
292
+ del masks
293
+
294
+ # Filter by predicted IoU
295
+ if self.pred_iou_thresh > 0.0:
296
+ keep_mask = data["iou_preds"] > self.pred_iou_thresh
297
+ data.filter(keep_mask)
298
+
299
+ # Calculate stability score
300
+ data["stability_score"] = calculate_stability_score(
301
+ data["masks"], self.predictor.model.mask_threshold, self.stability_score_offset
302
+ )
303
+ if self.stability_score_thresh > 0.0:
304
+ keep_mask = data["stability_score"] >= self.stability_score_thresh
305
+ data.filter(keep_mask)
306
+
307
+ # Threshold masks and calculate boxes
308
+ data["masks"] = data["masks"] > self.predictor.model.mask_threshold
309
+ data["boxes"] = batched_mask_to_box(data["masks"])
310
+
311
+ # Filter boxes that touch crop boundaries
312
+ keep_mask = ~is_box_near_crop_edge(data["boxes"], crop_box, [0, 0, orig_w, orig_h])
313
+ if not torch.all(keep_mask):
314
+ data.filter(keep_mask)
315
+
316
+ # Compress to RLE
317
+ data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w)
318
+ data["rles"] = mask_to_rle_pytorch(data["masks"])
319
+ del data["masks"]
320
+
321
+ return data
322
+
323
+ @staticmethod
324
+ def postprocess_small_regions(
325
+ mask_data: MaskData, min_area: int, nms_thresh: float
326
+ ) -> MaskData:
327
+ """
328
+ Removes small disconnected regions and holes in masks, then reruns
329
+ box NMS to remove any new duplicates.
330
+
331
+ Edits mask_data in place.
332
+
333
+ Requires open-cv as a dependency.
334
+ """
335
+ if len(mask_data["rles"]) == 0:
336
+ return mask_data
337
+
338
+ # Filter small disconnected regions and holes
339
+ new_masks = []
340
+ scores = []
341
+ for rle in mask_data["rles"]:
342
+ mask = rle_to_mask(rle)
343
+
344
+ mask, changed = remove_small_regions(mask, min_area, mode="holes")
345
+ unchanged = not changed
346
+ mask, changed = remove_small_regions(mask, min_area, mode="islands")
347
+ unchanged = unchanged and not changed
348
+
349
+ new_masks.append(torch.as_tensor(mask).unsqueeze(0))
350
+ # Give score=0 to changed masks and score=1 to unchanged masks
351
+ # so NMS will prefer ones that didn't need postprocessing
352
+ scores.append(float(unchanged))
353
+
354
+ # Recalculate boxes and remove any new duplicates
355
+ masks = torch.cat(new_masks, dim=0)
356
+ boxes = batched_mask_to_box(masks)
357
+ keep_by_nms = batched_nms(
358
+ boxes.float(),
359
+ torch.as_tensor(scores),
360
+ torch.zeros_like(boxes[:, 0]), # categories
361
+ iou_threshold=nms_thresh,
362
+ )
363
+
364
+ # Only recalculate RLEs for masks that have changed
365
+ for i_mask in keep_by_nms:
366
+ if scores[i_mask] == 0.0:
367
+ mask_torch = masks[i_mask].unsqueeze(0)
368
+ mask_data["rles"][i_mask] = mask_to_rle_pytorch(mask_torch)[0]
369
+ mask_data["boxes"][i_mask] = boxes[i_mask] # update res directly
370
+ mask_data.filter(keep_by_nms)
371
+
372
+ return mask_data
segment-anything/content/segment-anything/segment_anything/build_sam.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import torch
8
+
9
+ from functools import partial
10
+
11
+ from .modeling import ImageEncoderViT, MaskDecoder, PromptEncoder, Sam, TwoWayTransformer
12
+
13
+
14
+ def build_sam_vit_h(checkpoint=None):
15
+ return _build_sam(
16
+ encoder_embed_dim=1280,
17
+ encoder_depth=32,
18
+ encoder_num_heads=16,
19
+ encoder_global_attn_indexes=[7, 15, 23, 31],
20
+ checkpoint=checkpoint,
21
+ )
22
+
23
+
24
+ build_sam = build_sam_vit_h
25
+
26
+
27
+ def build_sam_vit_l(checkpoint=None):
28
+ return _build_sam(
29
+ encoder_embed_dim=1024,
30
+ encoder_depth=24,
31
+ encoder_num_heads=16,
32
+ encoder_global_attn_indexes=[5, 11, 17, 23],
33
+ checkpoint=checkpoint,
34
+ )
35
+
36
+
37
+ def build_sam_vit_b(checkpoint=None):
38
+ return _build_sam(
39
+ encoder_embed_dim=768,
40
+ encoder_depth=12,
41
+ encoder_num_heads=12,
42
+ encoder_global_attn_indexes=[2, 5, 8, 11],
43
+ checkpoint=checkpoint,
44
+ )
45
+
46
+
47
+ sam_model_registry = {
48
+ "default": build_sam_vit_h,
49
+ "vit_h": build_sam_vit_h,
50
+ "vit_l": build_sam_vit_l,
51
+ "vit_b": build_sam_vit_b,
52
+ }
53
+
54
+
55
+ def _build_sam(
56
+ encoder_embed_dim,
57
+ encoder_depth,
58
+ encoder_num_heads,
59
+ encoder_global_attn_indexes,
60
+ checkpoint=None,
61
+ ):
62
+ prompt_embed_dim = 256
63
+ image_size = 1024
64
+ vit_patch_size = 16
65
+ image_embedding_size = image_size // vit_patch_size
66
+ sam = Sam(
67
+ image_encoder=ImageEncoderViT(
68
+ depth=encoder_depth,
69
+ embed_dim=encoder_embed_dim,
70
+ img_size=image_size,
71
+ mlp_ratio=4,
72
+ norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
73
+ num_heads=encoder_num_heads,
74
+ patch_size=vit_patch_size,
75
+ qkv_bias=True,
76
+ use_rel_pos=True,
77
+ global_attn_indexes=encoder_global_attn_indexes,
78
+ window_size=14,
79
+ out_chans=prompt_embed_dim,
80
+ ),
81
+ prompt_encoder=PromptEncoder(
82
+ embed_dim=prompt_embed_dim,
83
+ image_embedding_size=(image_embedding_size, image_embedding_size),
84
+ input_image_size=(image_size, image_size),
85
+ mask_in_chans=16,
86
+ ),
87
+ mask_decoder=MaskDecoder(
88
+ num_multimask_outputs=3,
89
+ transformer=TwoWayTransformer(
90
+ depth=2,
91
+ embedding_dim=prompt_embed_dim,
92
+ mlp_dim=2048,
93
+ num_heads=8,
94
+ ),
95
+ transformer_dim=prompt_embed_dim,
96
+ iou_head_depth=3,
97
+ iou_head_hidden_dim=256,
98
+ ),
99
+ pixel_mean=[123.675, 116.28, 103.53],
100
+ pixel_std=[58.395, 57.12, 57.375],
101
+ )
102
+ sam.eval()
103
+ if checkpoint is not None:
104
+ with open(checkpoint, "rb") as f:
105
+ state_dict = torch.load(f)
106
+ sam.load_state_dict(state_dict)
107
+ return sam
segment-anything/content/segment-anything/segment_anything/modeling/__init__.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from .sam import Sam
8
+ from .image_encoder import ImageEncoderViT
9
+ from .mask_decoder import MaskDecoder
10
+ from .prompt_encoder import PromptEncoder
11
+ from .transformer import TwoWayTransformer
segment-anything/content/segment-anything/segment_anything/modeling/common.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import torch
8
+ import torch.nn as nn
9
+
10
+ from typing import Type
11
+
12
+
13
+ class MLPBlock(nn.Module):
14
+ def __init__(
15
+ self,
16
+ embedding_dim: int,
17
+ mlp_dim: int,
18
+ act: Type[nn.Module] = nn.GELU,
19
+ ) -> None:
20
+ super().__init__()
21
+ self.lin1 = nn.Linear(embedding_dim, mlp_dim)
22
+ self.lin2 = nn.Linear(mlp_dim, embedding_dim)
23
+ self.act = act()
24
+
25
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
26
+ return self.lin2(self.act(self.lin1(x)))
27
+
28
+
29
+ # From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
30
+ # Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
31
+ class LayerNorm2d(nn.Module):
32
+ def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
33
+ super().__init__()
34
+ self.weight = nn.Parameter(torch.ones(num_channels))
35
+ self.bias = nn.Parameter(torch.zeros(num_channels))
36
+ self.eps = eps
37
+
38
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
39
+ u = x.mean(1, keepdim=True)
40
+ s = (x - u).pow(2).mean(1, keepdim=True)
41
+ x = (x - u) / torch.sqrt(s + self.eps)
42
+ x = self.weight[:, None, None] * x + self.bias[:, None, None]
43
+ return x
segment-anything/content/segment-anything/segment_anything/modeling/image_encoder.py ADDED
@@ -0,0 +1,395 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import torch
8
+ import torch.nn as nn
9
+ import torch.nn.functional as F
10
+
11
+ from typing import Optional, Tuple, Type
12
+
13
+ from .common import LayerNorm2d, MLPBlock
14
+
15
+
16
+ # This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
17
+ class ImageEncoderViT(nn.Module):
18
+ def __init__(
19
+ self,
20
+ img_size: int = 1024,
21
+ patch_size: int = 16,
22
+ in_chans: int = 3,
23
+ embed_dim: int = 768,
24
+ depth: int = 12,
25
+ num_heads: int = 12,
26
+ mlp_ratio: float = 4.0,
27
+ out_chans: int = 256,
28
+ qkv_bias: bool = True,
29
+ norm_layer: Type[nn.Module] = nn.LayerNorm,
30
+ act_layer: Type[nn.Module] = nn.GELU,
31
+ use_abs_pos: bool = True,
32
+ use_rel_pos: bool = False,
33
+ rel_pos_zero_init: bool = True,
34
+ window_size: int = 0,
35
+ global_attn_indexes: Tuple[int, ...] = (),
36
+ ) -> None:
37
+ """
38
+ Args:
39
+ img_size (int): Input image size.
40
+ patch_size (int): Patch size.
41
+ in_chans (int): Number of input image channels.
42
+ embed_dim (int): Patch embedding dimension.
43
+ depth (int): Depth of ViT.
44
+ num_heads (int): Number of attention heads in each ViT block.
45
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
46
+ qkv_bias (bool): If True, add a learnable bias to query, key, value.
47
+ norm_layer (nn.Module): Normalization layer.
48
+ act_layer (nn.Module): Activation layer.
49
+ use_abs_pos (bool): If True, use absolute positional embeddings.
50
+ use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
51
+ rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
52
+ window_size (int): Window size for window attention blocks.
53
+ global_attn_indexes (list): Indexes for blocks using global attention.
54
+ """
55
+ super().__init__()
56
+ self.img_size = img_size
57
+
58
+ self.patch_embed = PatchEmbed(
59
+ kernel_size=(patch_size, patch_size),
60
+ stride=(patch_size, patch_size),
61
+ in_chans=in_chans,
62
+ embed_dim=embed_dim,
63
+ )
64
+
65
+ self.pos_embed: Optional[nn.Parameter] = None
66
+ if use_abs_pos:
67
+ # Initialize absolute positional embedding with pretrain image size.
68
+ self.pos_embed = nn.Parameter(
69
+ torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim)
70
+ )
71
+
72
+ self.blocks = nn.ModuleList()
73
+ for i in range(depth):
74
+ block = Block(
75
+ dim=embed_dim,
76
+ num_heads=num_heads,
77
+ mlp_ratio=mlp_ratio,
78
+ qkv_bias=qkv_bias,
79
+ norm_layer=norm_layer,
80
+ act_layer=act_layer,
81
+ use_rel_pos=use_rel_pos,
82
+ rel_pos_zero_init=rel_pos_zero_init,
83
+ window_size=window_size if i not in global_attn_indexes else 0,
84
+ input_size=(img_size // patch_size, img_size // patch_size),
85
+ )
86
+ self.blocks.append(block)
87
+
88
+ self.neck = nn.Sequential(
89
+ nn.Conv2d(
90
+ embed_dim,
91
+ out_chans,
92
+ kernel_size=1,
93
+ bias=False,
94
+ ),
95
+ LayerNorm2d(out_chans),
96
+ nn.Conv2d(
97
+ out_chans,
98
+ out_chans,
99
+ kernel_size=3,
100
+ padding=1,
101
+ bias=False,
102
+ ),
103
+ LayerNorm2d(out_chans),
104
+ )
105
+
106
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
107
+ x = self.patch_embed(x)
108
+ if self.pos_embed is not None:
109
+ x = x + self.pos_embed
110
+
111
+ for blk in self.blocks:
112
+ x = blk(x)
113
+
114
+ x = self.neck(x.permute(0, 3, 1, 2))
115
+
116
+ return x
117
+
118
+
119
+ class Block(nn.Module):
120
+ """Transformer blocks with support of window attention and residual propagation blocks"""
121
+
122
+ def __init__(
123
+ self,
124
+ dim: int,
125
+ num_heads: int,
126
+ mlp_ratio: float = 4.0,
127
+ qkv_bias: bool = True,
128
+ norm_layer: Type[nn.Module] = nn.LayerNorm,
129
+ act_layer: Type[nn.Module] = nn.GELU,
130
+ use_rel_pos: bool = False,
131
+ rel_pos_zero_init: bool = True,
132
+ window_size: int = 0,
133
+ input_size: Optional[Tuple[int, int]] = None,
134
+ ) -> None:
135
+ """
136
+ Args:
137
+ dim (int): Number of input channels.
138
+ num_heads (int): Number of attention heads in each ViT block.
139
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
140
+ qkv_bias (bool): If True, add a learnable bias to query, key, value.
141
+ norm_layer (nn.Module): Normalization layer.
142
+ act_layer (nn.Module): Activation layer.
143
+ use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
144
+ rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
145
+ window_size (int): Window size for window attention blocks. If it equals 0, then
146
+ use global attention.
147
+ input_size (tuple(int, int) or None): Input resolution for calculating the relative
148
+ positional parameter size.
149
+ """
150
+ super().__init__()
151
+ self.norm1 = norm_layer(dim)
152
+ self.attn = Attention(
153
+ dim,
154
+ num_heads=num_heads,
155
+ qkv_bias=qkv_bias,
156
+ use_rel_pos=use_rel_pos,
157
+ rel_pos_zero_init=rel_pos_zero_init,
158
+ input_size=input_size if window_size == 0 else (window_size, window_size),
159
+ )
160
+
161
+ self.norm2 = norm_layer(dim)
162
+ self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)
163
+
164
+ self.window_size = window_size
165
+
166
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
167
+ shortcut = x
168
+ x = self.norm1(x)
169
+ # Window partition
170
+ if self.window_size > 0:
171
+ H, W = x.shape[1], x.shape[2]
172
+ x, pad_hw = window_partition(x, self.window_size)
173
+
174
+ x = self.attn(x)
175
+ # Reverse window partition
176
+ if self.window_size > 0:
177
+ x = window_unpartition(x, self.window_size, pad_hw, (H, W))
178
+
179
+ x = shortcut + x
180
+ x = x + self.mlp(self.norm2(x))
181
+
182
+ return x
183
+
184
+
185
+ class Attention(nn.Module):
186
+ """Multi-head Attention block with relative position embeddings."""
187
+
188
+ def __init__(
189
+ self,
190
+ dim: int,
191
+ num_heads: int = 8,
192
+ qkv_bias: bool = True,
193
+ use_rel_pos: bool = False,
194
+ rel_pos_zero_init: bool = True,
195
+ input_size: Optional[Tuple[int, int]] = None,
196
+ ) -> None:
197
+ """
198
+ Args:
199
+ dim (int): Number of input channels.
200
+ num_heads (int): Number of attention heads.
201
+ qkv_bias (bool): If True, add a learnable bias to query, key, value.
202
+ rel_pos (bool): If True, add relative positional embeddings to the attention map.
203
+ rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
204
+ input_size (tuple(int, int) or None): Input resolution for calculating the relative
205
+ positional parameter size.
206
+ """
207
+ super().__init__()
208
+ self.num_heads = num_heads
209
+ head_dim = dim // num_heads
210
+ self.scale = head_dim**-0.5
211
+
212
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
213
+ self.proj = nn.Linear(dim, dim)
214
+
215
+ self.use_rel_pos = use_rel_pos
216
+ if self.use_rel_pos:
217
+ assert (
218
+ input_size is not None
219
+ ), "Input size must be provided if using relative positional encoding."
220
+ # initialize relative positional embeddings
221
+ self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
222
+ self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
223
+
224
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
225
+ B, H, W, _ = x.shape
226
+ # qkv with shape (3, B, nHead, H * W, C)
227
+ qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
228
+ # q, k, v with shape (B * nHead, H * W, C)
229
+ q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
230
+
231
+ attn = (q * self.scale) @ k.transpose(-2, -1)
232
+
233
+ if self.use_rel_pos:
234
+ attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
235
+
236
+ attn = attn.softmax(dim=-1)
237
+ x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
238
+ x = self.proj(x)
239
+
240
+ return x
241
+
242
+
243
+ def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
244
+ """
245
+ Partition into non-overlapping windows with padding if needed.
246
+ Args:
247
+ x (tensor): input tokens with [B, H, W, C].
248
+ window_size (int): window size.
249
+
250
+ Returns:
251
+ windows: windows after partition with [B * num_windows, window_size, window_size, C].
252
+ (Hp, Wp): padded height and width before partition
253
+ """
254
+ B, H, W, C = x.shape
255
+
256
+ pad_h = (window_size - H % window_size) % window_size
257
+ pad_w = (window_size - W % window_size) % window_size
258
+ if pad_h > 0 or pad_w > 0:
259
+ x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
260
+ Hp, Wp = H + pad_h, W + pad_w
261
+
262
+ x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
263
+ windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
264
+ return windows, (Hp, Wp)
265
+
266
+
267
+ def window_unpartition(
268
+ windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]
269
+ ) -> torch.Tensor:
270
+ """
271
+ Window unpartition into original sequences and removing padding.
272
+ Args:
273
+ windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
274
+ window_size (int): window size.
275
+ pad_hw (Tuple): padded height and width (Hp, Wp).
276
+ hw (Tuple): original height and width (H, W) before padding.
277
+
278
+ Returns:
279
+ x: unpartitioned sequences with [B, H, W, C].
280
+ """
281
+ Hp, Wp = pad_hw
282
+ H, W = hw
283
+ B = windows.shape[0] // (Hp * Wp // window_size // window_size)
284
+ x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
285
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
286
+
287
+ if Hp > H or Wp > W:
288
+ x = x[:, :H, :W, :].contiguous()
289
+ return x
290
+
291
+
292
+ def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
293
+ """
294
+ Get relative positional embeddings according to the relative positions of
295
+ query and key sizes.
296
+ Args:
297
+ q_size (int): size of query q.
298
+ k_size (int): size of key k.
299
+ rel_pos (Tensor): relative position embeddings (L, C).
300
+
301
+ Returns:
302
+ Extracted positional embeddings according to relative positions.
303
+ """
304
+ max_rel_dist = int(2 * max(q_size, k_size) - 1)
305
+ # Interpolate rel pos if needed.
306
+ if rel_pos.shape[0] != max_rel_dist:
307
+ # Interpolate rel pos.
308
+ rel_pos_resized = F.interpolate(
309
+ rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
310
+ size=max_rel_dist,
311
+ mode="linear",
312
+ )
313
+ rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
314
+ else:
315
+ rel_pos_resized = rel_pos
316
+
317
+ # Scale the coords with short length if shapes for q and k are different.
318
+ q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
319
+ k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
320
+ relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
321
+
322
+ return rel_pos_resized[relative_coords.long()]
323
+
324
+
325
+ def add_decomposed_rel_pos(
326
+ attn: torch.Tensor,
327
+ q: torch.Tensor,
328
+ rel_pos_h: torch.Tensor,
329
+ rel_pos_w: torch.Tensor,
330
+ q_size: Tuple[int, int],
331
+ k_size: Tuple[int, int],
332
+ ) -> torch.Tensor:
333
+ """
334
+ Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
335
+ https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
336
+ Args:
337
+ attn (Tensor): attention map.
338
+ q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
339
+ rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
340
+ rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
341
+ q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
342
+ k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
343
+
344
+ Returns:
345
+ attn (Tensor): attention map with added relative positional embeddings.
346
+ """
347
+ q_h, q_w = q_size
348
+ k_h, k_w = k_size
349
+ Rh = get_rel_pos(q_h, k_h, rel_pos_h)
350
+ Rw = get_rel_pos(q_w, k_w, rel_pos_w)
351
+
352
+ B, _, dim = q.shape
353
+ r_q = q.reshape(B, q_h, q_w, dim)
354
+ rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
355
+ rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
356
+
357
+ attn = (
358
+ attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]
359
+ ).view(B, q_h * q_w, k_h * k_w)
360
+
361
+ return attn
362
+
363
+
364
+ class PatchEmbed(nn.Module):
365
+ """
366
+ Image to Patch Embedding.
367
+ """
368
+
369
+ def __init__(
370
+ self,
371
+ kernel_size: Tuple[int, int] = (16, 16),
372
+ stride: Tuple[int, int] = (16, 16),
373
+ padding: Tuple[int, int] = (0, 0),
374
+ in_chans: int = 3,
375
+ embed_dim: int = 768,
376
+ ) -> None:
377
+ """
378
+ Args:
379
+ kernel_size (Tuple): kernel size of the projection layer.
380
+ stride (Tuple): stride of the projection layer.
381
+ padding (Tuple): padding size of the projection layer.
382
+ in_chans (int): Number of input image channels.
383
+ embed_dim (int): Patch embedding dimension.
384
+ """
385
+ super().__init__()
386
+
387
+ self.proj = nn.Conv2d(
388
+ in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
389
+ )
390
+
391
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
392
+ x = self.proj(x)
393
+ # B C H W -> B H W C
394
+ x = x.permute(0, 2, 3, 1)
395
+ return x
segment-anything/content/segment-anything/segment_anything/modeling/mask_decoder.py ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import torch
8
+ from torch import nn
9
+ from torch.nn import functional as F
10
+
11
+ from typing import List, Tuple, Type
12
+
13
+ from .common import LayerNorm2d
14
+
15
+
16
+ class MaskDecoder(nn.Module):
17
+ def __init__(
18
+ self,
19
+ *,
20
+ transformer_dim: int,
21
+ transformer: nn.Module,
22
+ num_multimask_outputs: int = 3,
23
+ activation: Type[nn.Module] = nn.GELU,
24
+ iou_head_depth: int = 3,
25
+ iou_head_hidden_dim: int = 256,
26
+ ) -> None:
27
+ """
28
+ Predicts masks given an image and prompt embeddings, using a
29
+ transformer architecture.
30
+
31
+ Arguments:
32
+ transformer_dim (int): the channel dimension of the transformer
33
+ transformer (nn.Module): the transformer used to predict masks
34
+ num_multimask_outputs (int): the number of masks to predict
35
+ when disambiguating masks
36
+ activation (nn.Module): the type of activation to use when
37
+ upscaling masks
38
+ iou_head_depth (int): the depth of the MLP used to predict
39
+ mask quality
40
+ iou_head_hidden_dim (int): the hidden dimension of the MLP
41
+ used to predict mask quality
42
+ """
43
+ super().__init__()
44
+ self.transformer_dim = transformer_dim
45
+ self.transformer = transformer
46
+
47
+ self.num_multimask_outputs = num_multimask_outputs
48
+
49
+ self.iou_token = nn.Embedding(1, transformer_dim)
50
+ self.num_mask_tokens = num_multimask_outputs + 1
51
+ self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
52
+
53
+ self.output_upscaling = nn.Sequential(
54
+ nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
55
+ LayerNorm2d(transformer_dim // 4),
56
+ activation(),
57
+ nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
58
+ activation(),
59
+ )
60
+ self.output_hypernetworks_mlps = nn.ModuleList(
61
+ [
62
+ MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
63
+ for i in range(self.num_mask_tokens)
64
+ ]
65
+ )
66
+
67
+ self.iou_prediction_head = MLP(
68
+ transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth
69
+ )
70
+
71
+ def forward(
72
+ self,
73
+ image_embeddings: torch.Tensor,
74
+ image_pe: torch.Tensor,
75
+ sparse_prompt_embeddings: torch.Tensor,
76
+ dense_prompt_embeddings: torch.Tensor,
77
+ multimask_output: bool,
78
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
79
+ """
80
+ Predict masks given image and prompt embeddings.
81
+
82
+ Arguments:
83
+ image_embeddings (torch.Tensor): the embeddings from the image encoder
84
+ image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
85
+ sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
86
+ dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
87
+ multimask_output (bool): Whether to return multiple masks or a single
88
+ mask.
89
+
90
+ Returns:
91
+ torch.Tensor: batched predicted masks
92
+ torch.Tensor: batched predictions of mask quality
93
+ """
94
+ masks, iou_pred = self.predict_masks(
95
+ image_embeddings=image_embeddings,
96
+ image_pe=image_pe,
97
+ sparse_prompt_embeddings=sparse_prompt_embeddings,
98
+ dense_prompt_embeddings=dense_prompt_embeddings,
99
+ )
100
+
101
+ # Select the correct mask or masks for output
102
+ if multimask_output:
103
+ mask_slice = slice(1, None)
104
+ else:
105
+ mask_slice = slice(0, 1)
106
+ masks = masks[:, mask_slice, :, :]
107
+ iou_pred = iou_pred[:, mask_slice]
108
+
109
+ # Prepare output
110
+ return masks, iou_pred
111
+
112
+ def predict_masks(
113
+ self,
114
+ image_embeddings: torch.Tensor,
115
+ image_pe: torch.Tensor,
116
+ sparse_prompt_embeddings: torch.Tensor,
117
+ dense_prompt_embeddings: torch.Tensor,
118
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
119
+ """Predicts masks. See 'forward' for more details."""
120
+ # Concatenate output tokens
121
+ output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
122
+ output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
123
+ tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
124
+
125
+ # Expand per-image data in batch direction to be per-mask
126
+ src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
127
+ src = src + dense_prompt_embeddings
128
+ pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
129
+ b, c, h, w = src.shape
130
+
131
+ # Run the transformer
132
+ hs, src = self.transformer(src, pos_src, tokens)
133
+ iou_token_out = hs[:, 0, :]
134
+ mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]
135
+
136
+ # Upscale mask embeddings and predict masks using the mask tokens
137
+ src = src.transpose(1, 2).view(b, c, h, w)
138
+ upscaled_embedding = self.output_upscaling(src)
139
+ hyper_in_list: List[torch.Tensor] = []
140
+ for i in range(self.num_mask_tokens):
141
+ hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
142
+ hyper_in = torch.stack(hyper_in_list, dim=1)
143
+ b, c, h, w = upscaled_embedding.shape
144
+ masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
145
+
146
+ # Generate mask quality predictions
147
+ iou_pred = self.iou_prediction_head(iou_token_out)
148
+
149
+ return masks, iou_pred
150
+
151
+
152
+ # Lightly adapted from
153
+ # https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
154
+ class MLP(nn.Module):
155
+ def __init__(
156
+ self,
157
+ input_dim: int,
158
+ hidden_dim: int,
159
+ output_dim: int,
160
+ num_layers: int,
161
+ sigmoid_output: bool = False,
162
+ ) -> None:
163
+ super().__init__()
164
+ self.num_layers = num_layers
165
+ h = [hidden_dim] * (num_layers - 1)
166
+ self.layers = nn.ModuleList(
167
+ nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
168
+ )
169
+ self.sigmoid_output = sigmoid_output
170
+
171
+ def forward(self, x):
172
+ for i, layer in enumerate(self.layers):
173
+ x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
174
+ if self.sigmoid_output:
175
+ x = F.sigmoid(x)
176
+ return x