from langchain_community.document_loaders import WebBaseLoader from langchain.prompts import ChatPromptTemplate from langchain.output_parsers import ResponseSchema from langchain.output_parsers import StructuredOutputParser from langchain.prompts import PromptTemplate from langchain.chat_models import ChatOpenAI from langchain.chains import LLMChain from dotenv import load_dotenv import requests import streamlit as st import re import openai load_dotenv() def is_shortened_url(url): # It is checking whether it is a shorten url or regular website url try: response = requests.head(url, allow_redirects=True) final_url = response.url if final_url != url: return True return False except requests.exceptions.RequestException as e: print("Error:", e) return False def expand_short_url(short_url): # It is converting shorten url to regular url try: response = requests.head(short_url, allow_redirects=True) if response.status_code == 200: return response.url else: print("Error: Short URL couldn't be expanded.") return None except requests.exceptions.RequestException as e: print("Error:", e) return None def get_original_url(url): if is_shortened_url(url): return expand_short_url(url) else: return url # This is the complete code where we are extracting content from the url using WebBaseLoader , using LLM to extract blog content only and then paraphrasing it def paraphrased_post(url): loader=WebBaseLoader([url],encoding='utf-8') docs = loader.load() template="""You are a helpful LinkedIn webscrapper. You are provided with a data , extract the content of the post only. {docs}""" prompt=PromptTemplate(template=template,input_variables=['docs']) llm=ChatOpenAI(temperature=0) chain=LLMChain(llm=llm,prompt=prompt) result=chain.invoke({'docs':docs},return_only_outputs=True) data=result['text'] template="""You are a helpful LinkedIn post paraphraser and plagiarism remover bot. You are provided with LinkedIn post content and your task is to paraphrase it and remove plagiarism .Return the output in the format with spaces or stickers if present. {data}""" prompt2=PromptTemplate(template=template,input_variables=['data']) llm=ChatOpenAI(temperature=0) chain2=LLMChain(llm=llm,prompt=prompt2) result2=chain2({'data':data},return_only_outputs=True) data2=extract_data(result2['text']) keywords=data2['Keywords'][:3] take_aways=data2['Take Aways'][:3] highlights=data2['Highlights'][:3] return result2['text'] ,keywords , take_aways, highlights def extract_data(post_data): keywords = ResponseSchema(name="Keywords", description="These are the keywords extracted from LinkedIn post",type="list") Take_aways = ResponseSchema(name="Take Aways", description="These are the take aways extracted from LinkedIn post", type= "list") Highlights=ResponseSchema(name="Highlights", description="These are the highlights extracted from LinkedIn post", type= "list") response_schema = [ keywords, Take_aways, Highlights ] output_parser = StructuredOutputParser.from_response_schemas(response_schema) format_instructions = output_parser.get_format_instructions() template = """ You are a helpful keywords , take aways and highlights extractor from the post of LinkedIn Bot. Your task is to extract relevant keywords , take aways and highlights in descending order of their scores in a list, means high relevant should be on the top . From the following text message, extract the following information: text message: {content} {format_instructions} """ prompt_template = ChatPromptTemplate.from_template(template) messages = prompt_template.format_messages(content=post_data, format_instructions=format_instructions) llm = ChatOpenAI(temperature=0) response = llm(messages) output_dict= output_parser.parse(response.content) return output_dict def main(): st.title("LinkedIn Post Creator") # Initialize SessionState dictionary session_state = st.session_state if 'paraphrase' not in session_state: session_state.paraphrase = "" if 'keywords' not in session_state: session_state.keywords = "" if 'take_aways' not in session_state: session_state.take_aways = "" if 'highlights' not in session_state: session_state.highlights = "" # User input for URL url = st.sidebar.text_input("Enter URL:", placeholder="Enter URL here...") # Button to submit URL if st.sidebar.button("Submit"): try: if url: original_url = get_original_url(url) match = re.match(r"https?://(?:www\.)?linkedin\.com/(posts|feed|pulse)/.*", original_url) # checking domain and url page (means it should only be a post nothing else like login page or something else) if match: session_state.paraphrase, session_state.keywords, session_state.take_aways, session_state.highlights = paraphrased_post(url) else: st.sidebar.error("Put a valid LinkedIn post URL only") except (openai.BadRequestError, TypeError) as e: st.sidebar.error("Put a valid LinkedIn post URL only") paraphrase_text=st.text_area("Paraphrase:", value=session_state.paraphrase, height=400) # import pyperclip # if st.button('Copy'): # For copying the content (Also install xclip (debian package) if error occured) # pyperclip.copy(paraphrase_text) # st.success('Text copied successfully!') if st.sidebar.button("Show Keywords") and session_state.keywords: st.write("Keywords:") for i, statement in enumerate(session_state.keywords, start=1): st.write(f"{i}. {statement}") if st.sidebar.button("Show Take Aways") and session_state.take_aways: st.write("Take Aways:") for i, statement in enumerate(session_state.take_aways, start=1): st.write(f"{i}. {statement}") if st.sidebar.button("Show Highlights") and session_state.highlights: st.write("Highlights:") for i, statement in enumerate(session_state.highlights, start=1): st.write(f"{i}. {statement}") if __name__ == "__main__": main()