Spaces:
Build error
Build error
TalhaUsuf
commited on
Commit
•
42b38a5
1
Parent(s):
ee384f2
added gfp gan
Browse files- app.py +66 -6
- models/__pycache__/gfpgan.cpython-37.pyc +0 -0
- models/gfpgan.py +19 -0
- requirements.txt +7 -6
app.py
CHANGED
@@ -7,15 +7,20 @@ import torchvision.transforms as transforms
|
|
7 |
import PIL
|
8 |
from PIL import Image
|
9 |
from PIL import ImageFile
|
|
|
|
|
10 |
import math
|
11 |
import os
|
12 |
import torch.nn.functional as F
|
13 |
from rich.panel import Panel
|
14 |
from rich.columns import Columns
|
15 |
from rich.console import Console
|
|
|
16 |
|
17 |
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
|
18 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
19 |
model1 = my_model(en_feature_num=48,
|
20 |
en_inter_num=32,
|
21 |
de_feature_num=64,
|
@@ -33,7 +38,10 @@ def default_toTensor(img):
|
|
33 |
composed_transform = transforms.Compose(t_list)
|
34 |
return composed_transform(img)
|
35 |
|
36 |
-
def
|
|
|
|
|
|
|
37 |
in_img = transforms.ToTensor()(img).to(device).unsqueeze(0)
|
38 |
b, c, h, w = in_img.size()
|
39 |
# pad image such that the resolution is a multiple of 32
|
@@ -75,7 +83,32 @@ def img_pad(x, w_pad, h_pad, w_odd_pad, h_odd_pad):
|
|
75 |
return y
|
76 |
|
77 |
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
description = " The model was trained to remove the moire patterns from images! Max input image resolution is \
|
80 |
up to 4K resolution\
|
81 |
<br /> \
|
@@ -85,6 +118,10 @@ It takes time to perform inference \
|
|
85 |
article = "Reference:\n Towards Efficient and Scale-Robust Ultra-High-Definition Image Demoiréing. CVMI Lab, Nov. 21, 2022. Accessed: Nov. 21, 2022. [Online]. Available: https://github.com/CVMI-Lab/UHDM"
|
86 |
|
87 |
|
|
|
|
|
|
|
|
|
88 |
files = [
|
89 |
'0001_01.jpg',
|
90 |
'0002_01.jpg',
|
@@ -676,14 +713,37 @@ files = [os.path.join("n000129", k) for k in files]
|
|
676 |
|
677 |
Console().print(Columns ([Panel.fit(f"{k}", style="red on black") for k in files]))
|
678 |
|
679 |
-
|
|
|
|
|
|
|
|
|
|
|
680 |
inputs=gr.Image(type="pil"),
|
681 |
outputs=gr.Image(type="pil"),
|
682 |
examples=files,
|
683 |
title = title,
|
684 |
# description = description,
|
685 |
-
article = article
|
|
|
686 |
)
|
687 |
|
688 |
-
|
689 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
import PIL
|
8 |
from PIL import Image
|
9 |
from PIL import ImageFile
|
10 |
+
from pathlib import Path
|
11 |
+
import shutil
|
12 |
import math
|
13 |
import os
|
14 |
import torch.nn.functional as F
|
15 |
from rich.panel import Panel
|
16 |
from rich.columns import Columns
|
17 |
from rich.console import Console
|
18 |
+
from models.gfpgan import gfpgan_predict
|
19 |
|
20 |
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
|
21 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
22 |
+
|
23 |
+
|
24 |
model1 = my_model(en_feature_num=48,
|
25 |
en_inter_num=32,
|
26 |
de_feature_num=64,
|
|
|
38 |
composed_transform = transforms.Compose(t_list)
|
39 |
return composed_transform(img)
|
40 |
|
41 |
+
def predict(img):
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
in_img = transforms.ToTensor()(img).to(device).unsqueeze(0)
|
46 |
b, c, h, w = in_img.size()
|
47 |
# pad image such that the resolution is a multiple of 32
|
|
|
83 |
return y
|
84 |
|
85 |
|
86 |
+
|
87 |
+
|
88 |
+
def predict_gfpgan(img):
|
89 |
+
|
90 |
+
with Console().status("[red] using [green] GFP-GAN v1.4", spinner="aesthetic"):
|
91 |
+
# if image already exists with this name then delete it
|
92 |
+
if Path("input_image_gfpgan.jpg").exists():
|
93 |
+
os.remove("input_image_gfpgan.jpg")
|
94 |
+
# save incoming PIL image to disk
|
95 |
+
img.save("input_image_gfpgan.jpg")
|
96 |
+
|
97 |
+
out = gfpgan_predict(img)
|
98 |
+
Console().print(out)
|
99 |
+
|
100 |
+
return img
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
|
111 |
+
title = "image enhancement"
|
112 |
description = " The model was trained to remove the moire patterns from images! Max input image resolution is \
|
113 |
up to 4K resolution\
|
114 |
<br /> \
|
|
|
118 |
article = "Reference:\n Towards Efficient and Scale-Robust Ultra-High-Definition Image Demoiréing. CVMI Lab, Nov. 21, 2022. Accessed: Nov. 21, 2022. [Online]. Available: https://github.com/CVMI-Lab/UHDM"
|
119 |
|
120 |
|
121 |
+
# ==========================================================================
|
122 |
+
# example images
|
123 |
+
# ==========================================================================
|
124 |
+
|
125 |
files = [
|
126 |
'0001_01.jpg',
|
127 |
'0002_01.jpg',
|
|
|
713 |
|
714 |
Console().print(Columns ([Panel.fit(f"{k}", style="red on black") for k in files]))
|
715 |
|
716 |
+
|
717 |
+
# # --------------------------------------------------------------------------
|
718 |
+
# # making interfaces for models
|
719 |
+
# # --------------------------------------------------------------------------
|
720 |
+
|
721 |
+
iface1 = gr.Interface(fn=predict,
|
722 |
inputs=gr.Image(type="pil"),
|
723 |
outputs=gr.Image(type="pil"),
|
724 |
examples=files,
|
725 |
title = title,
|
726 |
# description = description,
|
727 |
+
article = article,
|
728 |
+
allow_flagging="auto"
|
729 |
)
|
730 |
|
731 |
+
gfpgan = gr.Interface(fn=predict_gfpgan,
|
732 |
+
inputs=gr.Image(type="pil"),
|
733 |
+
outputs=gr.Image(type="pil"),
|
734 |
+
examples=files,
|
735 |
+
title = "GFP-GAN v 1.4",
|
736 |
+
# description = description,
|
737 |
+
article = "Practical face restoration algorithm for old photos",
|
738 |
+
allow_flagging="auto"
|
739 |
+
)
|
740 |
+
|
741 |
+
|
742 |
+
|
743 |
+
|
744 |
+
# setting queues for all models
|
745 |
+
iface1.queue(concurrency_count=3)
|
746 |
+
gfpgan.queue(concurrency_count=3)
|
747 |
+
|
748 |
+
# launching the interface in parallel model
|
749 |
+
gr.Parallel(iface1, gfpgan).launch()
|
models/__pycache__/gfpgan.cpython-37.pyc
ADDED
Binary file (658 Bytes). View file
|
|
models/gfpgan.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import replicate
|
2 |
+
|
3 |
+
|
4 |
+
model = replicate.models.get("tencentarc/gfpgan")
|
5 |
+
version = model.versions.get("9283608cc6b7be6b65a8e44983db012355fde4132009bf99d976b2f0896856a3")
|
6 |
+
|
7 |
+
|
8 |
+
def gfpgan_predict(input_image : str):
|
9 |
+
'''
|
10 |
+
takes path to image as input and returns enhanced image
|
11 |
+
|
12 |
+
Parameters
|
13 |
+
----------
|
14 |
+
input_image : str
|
15 |
+
path to the image file
|
16 |
+
'''
|
17 |
+
output = version.predict(img=input_image, version='v1.4', scale=1.0)
|
18 |
+
|
19 |
+
return output
|
requirements.txt
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
|
|
|
1 |
+
gradio==3.11.0
|
2 |
+
opencv_python_headless==4.6.0.66
|
3 |
+
Pillow==9.3.0
|
4 |
+
replicate==0.4.0
|
5 |
+
rich==12.6.0
|
6 |
+
torch==1.11.0
|
7 |
+
torchvision==0.12.0
|