import pandas as pd from sentence_transformers import SentenceTransformer, util from transformers import pipeline import torch import gradio as gr # Load the dataset df = pd.read_csv(r"C:\Users\Saarthak\Desktop\Saarthak_assignment\analytics_vidhya_data.csv", encoding='ISO-8859-1') # Load the pre-trained model for embeddings (using SentenceTransformers) model = SentenceTransformer('multi-qa-mpnet-base-dot-v1') # Combine title and description to create a full text for each course df['full_text'] = df.iloc[:,0] + " " + df.iloc[:,1] + " " + df['Instructor Name'] + " " + str(df['Rating']) + " " + df['Category'] # Convert full course texts into embeddings course_embeddings = model.encode(df['full_text'].tolist(), convert_to_tensor=True) # Function to expand the query using paraphrasing def expand_query(query): paraphraser = pipeline('text2text-generation', model='Vamsi/T5_Paraphrase_Paws') expanded_queries = paraphraser(query, num_return_sequences=3, max_length=50, do_sample=True) return [q['generated_text'] for q in expanded_queries] # Function to search for the most relevant courses def search_courses(query, level_filter=None, category_filter=None, top_k=3): # Step 1: Expand the query using paraphrasing expanded_queries = expand_query(query) # Step 2: Initialize an array to store all similarities all_similarities = [] for expanded_query in expanded_queries: # Convert each expanded query into an embedding query_embedding = model.encode(expanded_query, convert_to_tensor=True) # Compute cosine similarities between the query embedding and course embeddings similarities = util.pytorch_cos_sim(query_embedding, course_embeddings)[0] # Append to the list of all similarities all_similarities.append(similarities) # Step 3: Convert the list of tensors to a single tensor by taking the maximum similarity for each course aggregated_similarities = torch.max(torch.stack(all_similarities), dim=0)[0] # Step 4: Apply filters filtered_df = df.copy() if level_filter: filtered_df = filtered_df[filtered_df['Level of Difficulty'] == level_filter] if category_filter: filtered_df = filtered_df[filtered_df['Category'] == category_filter] if filtered_df.empty: return "

No matching courses found.

" # Recalculate similarities for the filtered data filtered_similarities = aggregated_similarities[filtered_df.index] # Step 5: Get top_k most similar courses top_results = filtered_similarities.topk(k=min(top_k, len(filtered_similarities))) # Prepare the output as clickable links results = [] for idx in top_results.indices: idx = int(idx) course_title = filtered_df.iloc[idx]['Course Title'] course_description = filtered_df.iloc[idx,1] course_url = filtered_df.iloc[idx,-1] # Format the result as a clickable hyperlink using raw HTML course_link = f'{course_title}' results.append(f"{course_link}
{course_description}

") # Combine all results into an HTML formatted list return "
    " + "".join([f"
  1. {result}
  2. " for result in results]) + "
" # Create Gradio UI def create_gradio_interface(): with gr.Blocks() as demo: gr.Markdown("# 📚 Analytics Vidhya Free Courses") gr.Markdown("Enter your query and use filters to narrow down the search.") # Input elements query = gr.Textbox(label="🔍 Search for a course", placeholder="Enter course topic or description") # Filters (in a collapsible form) with gr.Accordion("🔍 Filters", open=False): level_filter = gr.Dropdown(choices=["Beginner", "Intermediate", "Advanced"], label="📚 Course Level", multiselect=False) category_filter = gr.Dropdown(choices=["Data Science", "Machine Learning", "Deep Learning", "AI", "NLP"], label="📂 Category", multiselect=False) # Search button search_button = gr.Button("Search") # Output HTML for displaying results output = gr.HTML(label="Search Results") # On button click, trigger the search function search_button.click(fn=search_courses, inputs=[query, level_filter, category_filter], outputs=output) return demo # Launch Gradio interface demo = create_gradio_interface() demo.launch(share=True, debug=True)