Upload 3 files
Browse files- Dockerfile +29 -0
- app.py +56 -0
- requirements.txt +14 -0
Dockerfile
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.12
|
2 |
+
|
3 |
+
## set the working directory to /code
|
4 |
+
WORKDIR /code
|
5 |
+
|
6 |
+
## Copy the current directory contents in the container at /code
|
7 |
+
COPY ./requirements.txt /code/requirements.txt
|
8 |
+
|
9 |
+
## Install the requirements.txt
|
10 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
11 |
+
|
12 |
+
# Set up a new user named "user"
|
13 |
+
RUN useradd user
|
14 |
+
# Switch to the "user" user
|
15 |
+
USER user
|
16 |
+
|
17 |
+
# Set home to the user's home directory
|
18 |
+
|
19 |
+
ENV HOME=/home/user \
|
20 |
+
PATH=/home/user/.local/bin:$PATH
|
21 |
+
|
22 |
+
# Set the working directory to the user's home directory
|
23 |
+
WORKDIR $HOME/app
|
24 |
+
|
25 |
+
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
26 |
+
COPY --chown=user . $HOME/app
|
27 |
+
|
28 |
+
## Start the FASTAPI App on port 7860
|
29 |
+
CMD ["gunicorn", "--bind", "0.0.0.0:7860", "app:app"]
|
app.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, render_template, request, jsonify
|
2 |
+
from src.pipelines.prediction_pipeline import CustomData, PredictPipeline
|
3 |
+
from src.exception import CustomException
|
4 |
+
|
5 |
+
app = Flask(__name__)
|
6 |
+
|
7 |
+
@app.route('/')
|
8 |
+
def index():
|
9 |
+
return render_template('index.html')
|
10 |
+
|
11 |
+
@app.route('/predict', methods=['POST'])
|
12 |
+
def predict_route():
|
13 |
+
try:
|
14 |
+
# Get the form data from the request
|
15 |
+
data = request.form
|
16 |
+
|
17 |
+
# Extract values safely from the incoming form data
|
18 |
+
custom_data = CustomData(
|
19 |
+
age=data.get("age"),
|
20 |
+
sex=data.get("sex"),
|
21 |
+
chest_pain_type=data.get("chestPainType"),
|
22 |
+
resting_bp=data.get("restingBP"),
|
23 |
+
cholesterol=data.get("cholesterol"),
|
24 |
+
fasting_bs=data.get("fastingBS"),
|
25 |
+
resting_ecg=data.get("restingECG"),
|
26 |
+
max_hr=data.get("maxHR"),
|
27 |
+
oldpeak=data.get("oldpeak"),
|
28 |
+
exercise_angina=data.get("exerciseAngina"),
|
29 |
+
st_slope=data.get("stSlope")
|
30 |
+
)
|
31 |
+
|
32 |
+
# Convert to DataFrame
|
33 |
+
input_df = custom_data.get_data_as_dataframe()
|
34 |
+
|
35 |
+
# Create a PredictPipeline instance and make a prediction
|
36 |
+
prediction_pipeline = PredictPipeline()
|
37 |
+
prediction = prediction_pipeline.predict(input_df)
|
38 |
+
|
39 |
+
# Condition to check if prediction equals 1
|
40 |
+
if prediction[0] == 1:
|
41 |
+
result_message = "You are at moderate risk of experiencing a heart attack"
|
42 |
+
else:
|
43 |
+
result_message = "There are no immediate risk factors for a heart attack"
|
44 |
+
|
45 |
+
# Pass the result message back to the template for display
|
46 |
+
return render_template('index.html', results=result_message)
|
47 |
+
|
48 |
+
except ValueError as ve:
|
49 |
+
return jsonify({"error": str(ve)}), 400
|
50 |
+
except CustomException as ce:
|
51 |
+
return jsonify({"error": str(ce)}), 500
|
52 |
+
except Exception as e:
|
53 |
+
return jsonify({"error": "An error occurred: " + str(e)}), 500
|
54 |
+
|
55 |
+
if __name__ == '__main__':
|
56 |
+
app.run(debug=True)
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
pandas
|
3 |
+
matplotlib
|
4 |
+
seaborn
|
5 |
+
scikit-learn
|
6 |
+
ipykernel
|
7 |
+
catboost
|
8 |
+
xgboost
|
9 |
+
dill
|
10 |
+
flask
|
11 |
+
flask_cors
|
12 |
+
lime
|
13 |
+
gunicorn
|
14 |
+
#-e .
|