Spaces:
Sleeping
Sleeping
alejandro
commited on
Commit
·
5bea3fb
1
Parent(s):
bda4e9b
finish tutorial
Browse files- src/app.py +89 -90
src/app.py
CHANGED
@@ -1,140 +1,139 @@
|
|
1 |
-
|
|
|
|
|
|
|
2 |
from langchain_community.utilities import SQLDatabase
|
3 |
from langchain_core.output_parsers import StrOutputParser
|
4 |
-
from langchain_core.runnables import RunnablePassthrough
|
5 |
from langchain_openai import ChatOpenAI
|
6 |
from langchain_groq import ChatGroq
|
7 |
-
|
8 |
-
from langchain_core.prompts import ChatPromptTemplate
|
9 |
-
from dotenv import load_dotenv
|
10 |
|
11 |
-
def
|
12 |
-
db_uri = f"mysql+mysqlconnector://{
|
13 |
return SQLDatabase.from_uri(db_uri)
|
14 |
|
15 |
def get_sql_chain(db):
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
Question: which 3 artists have the most tracks?
|
22 |
SQL Query: SELECT ArtistId, COUNT(*) as track_count FROM Track GROUP BY ArtistId ORDER BY track_count DESC LIMIT 3;
|
23 |
Question: Name 10 artists
|
24 |
SQL Query: SELECT Name FROM Artist LIMIT 10;
|
|
|
|
|
|
|
25 |
Question: {question}
|
26 |
SQL Query:
|
27 |
"""
|
28 |
-
|
29 |
-
prompt = ChatPromptTemplate.from_template(template)
|
30 |
-
|
31 |
-
llm = ChatOpenAI()
|
32 |
-
# llm = ChatGroq(temperature=0, model_name="mixtral-8x7b-32768")
|
33 |
|
34 |
-
|
35 |
-
return db.get_table_info()
|
36 |
-
|
37 |
-
return (
|
38 |
-
RunnablePassthrough.assign(schema=get_schema)
|
39 |
-
| prompt
|
40 |
-
| llm.bind(stop="\nSQL Result:")
|
41 |
-
| StrOutputParser()
|
42 |
-
)
|
43 |
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
sql_chain = get_sql_chain(db)
|
47 |
|
48 |
template = """
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
57 |
prompt = ChatPromptTemplate.from_template(template)
|
58 |
|
59 |
-
# llm =
|
60 |
-
llm =
|
61 |
-
|
62 |
-
def get_schema(_):
|
63 |
-
return db.get_table_info()
|
64 |
|
65 |
chain = (
|
66 |
RunnablePassthrough.assign(query=sql_chain).assign(
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
)
|
74 |
|
75 |
-
return chain.
|
76 |
"question": user_query,
|
77 |
"chat_history": chat_history,
|
78 |
})
|
|
|
79 |
|
|
|
|
|
|
|
|
|
|
|
80 |
load_dotenv()
|
81 |
|
82 |
-
st.set_page_config(
|
83 |
|
84 |
-
|
85 |
-
st.session_state.chat_history = [
|
86 |
-
AIMessage(content="Hello! I'm a chatbot that can help you with your SQL queries. Ask me anything about your database!")
|
87 |
-
]
|
88 |
-
|
89 |
-
if 'db' not in st.session_state:
|
90 |
-
st.session_state.db = None
|
91 |
|
92 |
with st.sidebar:
|
93 |
-
st.
|
94 |
-
st.write("This is a simple chat application
|
95 |
-
|
96 |
-
st.text_input("Host",
|
97 |
-
st.text_input("Port",
|
98 |
-
st.text_input("
|
99 |
-
st.text_input("Password",
|
100 |
-
st.text_input("Database",
|
101 |
|
102 |
if st.button("Connect"):
|
103 |
-
with st.spinner("Connecting to
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
st.success("Connected to
|
113 |
|
114 |
-
user_query = st.chat_input("Type a message...")
|
115 |
-
|
116 |
-
# conversation
|
117 |
for message in st.session_state.chat_history:
|
118 |
if isinstance(message, AIMessage):
|
119 |
with st.chat_message("AI"):
|
120 |
-
st.
|
121 |
elif isinstance(message, HumanMessage):
|
122 |
with st.chat_message("Human"):
|
123 |
-
st.
|
124 |
-
|
125 |
|
126 |
-
|
|
|
127 |
st.session_state.chat_history.append(HumanMessage(content=user_query))
|
128 |
-
|
129 |
with st.chat_message("Human"):
|
130 |
st.markdown(user_query)
|
131 |
-
|
132 |
with st.chat_message("AI"):
|
133 |
-
response = st.
|
134 |
-
|
135 |
-
st.session_state.chat_history,
|
136 |
-
st.session_state.db
|
137 |
-
))
|
138 |
|
139 |
-
st.session_state.chat_history.append(AIMessage(content=response))
|
140 |
-
|
|
|
1 |
+
from dotenv import load_dotenv
|
2 |
+
from langchain_core.messages import AIMessage, HumanMessage
|
3 |
+
from langchain_core.prompts import ChatPromptTemplate
|
4 |
+
from langchain_core.runnables import RunnablePassthrough
|
5 |
from langchain_community.utilities import SQLDatabase
|
6 |
from langchain_core.output_parsers import StrOutputParser
|
|
|
7 |
from langchain_openai import ChatOpenAI
|
8 |
from langchain_groq import ChatGroq
|
9 |
+
import streamlit as st
|
|
|
|
|
10 |
|
11 |
+
def init_database(user: str, password: str, host: str, port: str, database: str) -> SQLDatabase:
|
12 |
+
db_uri = f"mysql+mysqlconnector://{user}:{password}@{host}:{port}/{database}"
|
13 |
return SQLDatabase.from_uri(db_uri)
|
14 |
|
15 |
def get_sql_chain(db):
|
16 |
+
template = """
|
17 |
+
You are a data analyst at a company. You are interacting with a user who is asking you questions about the company's database.
|
18 |
+
Based on the table schema below, write a SQL query that would answer the user's question. Take the conversation history into account.
|
19 |
+
|
20 |
+
<SCHEMA>{schema}</SCHEMA>
|
21 |
+
|
22 |
+
Conversation History: {chat_history}
|
23 |
+
|
24 |
+
Write only the SQL query and nothing else. Do not wrap the SQL query in any other text, not even backticks.
|
25 |
+
|
26 |
+
For example:
|
27 |
Question: which 3 artists have the most tracks?
|
28 |
SQL Query: SELECT ArtistId, COUNT(*) as track_count FROM Track GROUP BY ArtistId ORDER BY track_count DESC LIMIT 3;
|
29 |
Question: Name 10 artists
|
30 |
SQL Query: SELECT Name FROM Artist LIMIT 10;
|
31 |
+
|
32 |
+
Your turn:
|
33 |
+
|
34 |
Question: {question}
|
35 |
SQL Query:
|
36 |
"""
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
prompt = ChatPromptTemplate.from_template(template)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
# llm = ChatOpenAI(model="gpt-4-0125-preview")
|
41 |
+
llm = ChatGroq(model="mixtral-8x7b-32768", temperature=0)
|
42 |
+
|
43 |
+
def get_schema(_):
|
44 |
+
return db.get_table_info()
|
45 |
+
|
46 |
+
return (
|
47 |
+
RunnablePassthrough.assign(schema=get_schema)
|
48 |
+
| prompt
|
49 |
+
| llm
|
50 |
+
| StrOutputParser()
|
51 |
+
)
|
52 |
+
|
53 |
+
def get_response(user_query: str, db: SQLDatabase, chat_history: list):
|
54 |
sql_chain = get_sql_chain(db)
|
55 |
|
56 |
template = """
|
57 |
+
You are a data analyst at a company. You are interacting with a user who is asking you questions about the company's database.
|
58 |
+
Based on the table schema below, question, sql query, and sql response, write a natural language response.
|
59 |
+
<SCHEMA>{schema}</SCHEMA>
|
60 |
+
|
61 |
+
Conversation History: {chat_history}
|
62 |
+
SQL Query: <SQL>{query}</SQL>
|
63 |
+
User question: {question}
|
64 |
+
SQL Response: {response}"""
|
65 |
+
|
66 |
prompt = ChatPromptTemplate.from_template(template)
|
67 |
|
68 |
+
# llm = ChatOpenAI(model="gpt-4-0125-preview")
|
69 |
+
llm = ChatGroq(model="mixtral-8x7b-32768", temperature=0)
|
|
|
|
|
|
|
70 |
|
71 |
chain = (
|
72 |
RunnablePassthrough.assign(query=sql_chain).assign(
|
73 |
+
schema=lambda _: db.get_table_info(),
|
74 |
+
response=lambda vars: db.run(vars["query"]),
|
75 |
+
)
|
76 |
+
| prompt
|
77 |
+
| llm
|
78 |
+
| StrOutputParser()
|
79 |
)
|
80 |
|
81 |
+
return chain.invoke({
|
82 |
"question": user_query,
|
83 |
"chat_history": chat_history,
|
84 |
})
|
85 |
+
|
86 |
|
87 |
+
if "chat_history" not in st.session_state:
|
88 |
+
st.session_state.chat_history = [
|
89 |
+
AIMessage(content="Hello! I'm a SQL assistant. Ask me anything about your database."),
|
90 |
+
]
|
91 |
+
|
92 |
load_dotenv()
|
93 |
|
94 |
+
st.set_page_config(page_title="Chat with MySQL", page_icon=":speech_balloon:")
|
95 |
|
96 |
+
st.title("Chat with MySQL")
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
with st.sidebar:
|
99 |
+
st.subheader("Settings")
|
100 |
+
st.write("This is a simple chat application using MySQL. Connect to the database and start chatting.")
|
101 |
+
|
102 |
+
st.text_input("Host", value="localhost", key="Host")
|
103 |
+
st.text_input("Port", value="3306", key="Port")
|
104 |
+
st.text_input("User", value="root", key="User")
|
105 |
+
st.text_input("Password", type="password", value="admin", key="Password")
|
106 |
+
st.text_input("Database", value="Chinook", key="Database")
|
107 |
|
108 |
if st.button("Connect"):
|
109 |
+
with st.spinner("Connecting to database..."):
|
110 |
+
db = init_database(
|
111 |
+
st.session_state["User"],
|
112 |
+
st.session_state["Password"],
|
113 |
+
st.session_state["Host"],
|
114 |
+
st.session_state["Port"],
|
115 |
+
st.session_state["Database"]
|
116 |
+
)
|
117 |
+
st.session_state.db = db
|
118 |
+
st.success("Connected to database!")
|
119 |
|
|
|
|
|
|
|
120 |
for message in st.session_state.chat_history:
|
121 |
if isinstance(message, AIMessage):
|
122 |
with st.chat_message("AI"):
|
123 |
+
st.markdown(message.content)
|
124 |
elif isinstance(message, HumanMessage):
|
125 |
with st.chat_message("Human"):
|
126 |
+
st.markdown(message.content)
|
|
|
127 |
|
128 |
+
user_query = st.chat_input("Type a message...")
|
129 |
+
if user_query is not None and user_query.strip() != "":
|
130 |
st.session_state.chat_history.append(HumanMessage(content=user_query))
|
131 |
+
|
132 |
with st.chat_message("Human"):
|
133 |
st.markdown(user_query)
|
134 |
+
|
135 |
with st.chat_message("AI"):
|
136 |
+
response = get_response(user_query, st.session_state.db, st.session_state.chat_history)
|
137 |
+
st.markdown(response)
|
|
|
|
|
|
|
138 |
|
139 |
+
st.session_state.chat_history.append(AIMessage(content=response))
|
|