Update app.py
Browse files
app.py
CHANGED
@@ -2,45 +2,11 @@ import gradio as gr
|
|
2 |
from transformers import pipeline
|
3 |
from PIL import Image, ImageFilter, ImageOps
|
4 |
import numpy as np
|
5 |
-
import requests
|
6 |
import cv2
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
|
11 |
-
"NVIDIA SegFormer (ADE20K)": "nvidia/segformer-b0-finetuned-ade-512-512",
|
12 |
-
"Facebook MaskFormer (COCO)": "facebook/maskformer-swin-base-ade",
|
13 |
-
"OneFormer (COCO)": "shi-labs/oneformer_coco_swin_large",
|
14 |
-
"NVIDIA SegFormer (B5)": "nvidia/segformer-b5-finetuned-cityscapes-1024-1024"
|
15 |
-
}
|
16 |
-
|
17 |
-
# Dictionary of available depth estimation models
|
18 |
-
DEPTH_MODELS = {
|
19 |
-
"Intel ZoeDepth (NYU-KITTI)": "Intel/zoedepth-nyu-kitti",
|
20 |
-
"DPT (Large)": "Intel/dpt-large",
|
21 |
-
"DPT (Hybrid)": "Intel/dpt-hybrid-midas",
|
22 |
-
"GLPDepth": "vinvino02/glpn-nyu"
|
23 |
-
}
|
24 |
-
|
25 |
-
# Initialize model placeholders
|
26 |
-
segmentation_model = None
|
27 |
-
depth_estimator = None
|
28 |
-
|
29 |
-
def load_segmentation_model(model_name):
|
30 |
-
"""Load the selected segmentation model"""
|
31 |
-
global segmentation_model
|
32 |
-
model_path = SEGMENTATION_MODELS[model_name]
|
33 |
-
print(f"Loading segmentation model: {model_path}...")
|
34 |
-
segmentation_model = pipeline("image-segmentation", model=model_path)
|
35 |
-
return f"Loaded segmentation model: {model_name}"
|
36 |
-
|
37 |
-
def load_depth_model(model_name):
|
38 |
-
"""Load the selected depth estimation model"""
|
39 |
-
global depth_estimator
|
40 |
-
model_path = DEPTH_MODELS[model_name]
|
41 |
-
print(f"Loading depth estimation model: {model_path}...")
|
42 |
-
depth_estimator = pipeline("depth-estimation", model=model_path)
|
43 |
-
return f"Loaded depth model: {model_name}"
|
44 |
|
45 |
def lens_blur(image, radius):
|
46 |
"""
|
@@ -98,10 +64,6 @@ def process_image(input_image, method, blur_intensity, blur_type):
|
|
98 |
- output_image: final composited image.
|
99 |
- mask_image: the mask used (binary for segmentation, normalized depth for depth-based).
|
100 |
"""
|
101 |
-
# Check if models are loaded
|
102 |
-
if segmentation_model is None or depth_estimator is None:
|
103 |
-
return input_image, input_image.convert("L")
|
104 |
-
|
105 |
# Ensure image is in RGB mode
|
106 |
input_image = input_image.convert("RGB")
|
107 |
|
@@ -114,24 +76,24 @@ def process_image(input_image, method, blur_intensity, blur_type):
|
|
114 |
blur_fn = lambda img, rad: img.filter(ImageFilter.GaussianBlur(radius=rad))
|
115 |
|
116 |
if method == "Segmented Background Blur":
|
117 |
-
# Use segmentation to obtain a foreground mask
|
118 |
results = segmentation_model(input_image)
|
119 |
-
# Assume the last result is the main foreground object
|
120 |
foreground_mask = results[-1]["mask"]
|
121 |
-
# Ensure the mask is grayscale
|
122 |
foreground_mask = foreground_mask.convert("L")
|
123 |
-
# Threshold to create a binary mask
|
124 |
binary_mask = foreground_mask.point(lambda p: 255 if p > 128 else 0)
|
125 |
|
126 |
-
# Blur the background using the selected blur function
|
127 |
blurred_background = blur_fn(input_image, blur_intensity)
|
128 |
|
129 |
-
# Composite the final image: keep foreground and use blurred background elsewhere
|
130 |
output_image = Image.composite(input_image, blurred_background, binary_mask)
|
131 |
mask_image = binary_mask
|
132 |
|
133 |
elif method == "Depth-based Variable Blur":
|
134 |
-
# Generate depth map
|
135 |
depth_results = depth_estimator(input_image)
|
136 |
depth_map = depth_results["depth"]
|
137 |
|
@@ -141,16 +103,16 @@ def process_image(input_image, method, blur_intensity, blur_type):
|
|
141 |
normalized_depth = (norm * 255).astype(np.uint8)
|
142 |
mask_image = Image.fromarray(normalized_depth)
|
143 |
|
144 |
-
# Create fully blurred version using the selected blur function
|
145 |
blurred_image = blur_fn(input_image, blur_intensity)
|
146 |
|
147 |
-
# Convert images to arrays for blending
|
148 |
orig_np = np.array(input_image).astype(np.float32)
|
149 |
blur_np = np.array(blurred_image).astype(np.float32)
|
150 |
-
# Reshape mask for broadcasting
|
151 |
alpha = normalized_depth[..., np.newaxis] / 255.0
|
152 |
|
153 |
-
# Blend pixels: 0 = original; 1 = fully blurred
|
154 |
blended_np = (1 - alpha) * orig_np + alpha * blur_np
|
155 |
blended_np = np.clip(blended_np, 0, 255).astype(np.uint8)
|
156 |
output_image = Image.fromarray(blended_np)
|
@@ -165,71 +127,28 @@ def process_image(input_image, method, blur_intensity, blur_type):
|
|
165 |
with gr.Blocks() as demo:
|
166 |
gr.Markdown("## Image Processing App: Segmentation & Depth-based Blur")
|
167 |
|
168 |
-
with gr.
|
169 |
-
with gr.
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
depth_model_load_btn = gr.Button("Load Depth Model")
|
186 |
-
depth_model_status = gr.Textbox(label="Status", value="No model loaded")
|
187 |
-
|
188 |
-
with gr.Tab("Image Processing"):
|
189 |
-
with gr.Row():
|
190 |
-
with gr.Column():
|
191 |
-
input_image = gr.Image(label="Input Image", type="pil")
|
192 |
-
method = gr.Radio(label="Processing Method",
|
193 |
-
choices=["Segmented Background Blur", "Depth-based Variable Blur"],
|
194 |
-
value="Segmented Background Blur")
|
195 |
-
blur_intensity = gr.Slider(label="Blur Intensity (Maximum Blur Radius)",
|
196 |
-
minimum=1, maximum=30, step=1, value=15)
|
197 |
-
blur_type = gr.Dropdown(label="Blur Type",
|
198 |
-
choices=["Gaussian Blur", "Lens Blur"],
|
199 |
-
value="Gaussian Blur")
|
200 |
-
run_button = gr.Button("Process Image")
|
201 |
-
with gr.Column():
|
202 |
-
output_image = gr.Image(label="Output Image")
|
203 |
-
mask_output = gr.Image(label="Mask")
|
204 |
-
|
205 |
-
# Set up event handlers
|
206 |
-
seg_model_load_btn.click(
|
207 |
-
fn=load_segmentation_model,
|
208 |
-
inputs=[seg_model_dropdown],
|
209 |
-
outputs=[seg_model_status]
|
210 |
-
)
|
211 |
-
|
212 |
-
depth_model_load_btn.click(
|
213 |
-
fn=load_depth_model,
|
214 |
-
inputs=[depth_model_dropdown],
|
215 |
-
outputs=[depth_model_status]
|
216 |
-
)
|
217 |
-
|
218 |
run_button.click(
|
219 |
fn=process_image,
|
220 |
inputs=[input_image, method, blur_intensity, blur_type],
|
221 |
outputs=[output_image, mask_output]
|
222 |
)
|
223 |
|
224 |
-
# Load default models on startup
|
225 |
-
demo.load(
|
226 |
-
fn=lambda: (
|
227 |
-
load_segmentation_model(list(SEGMENTATION_MODELS.keys())[0]),
|
228 |
-
load_depth_model(list(DEPTH_MODELS.keys())[0])
|
229 |
-
),
|
230 |
-
inputs=None,
|
231 |
-
outputs=[seg_model_status, depth_model_status]
|
232 |
-
)
|
233 |
-
|
234 |
# Launch the app
|
235 |
demo.launch()
|
|
|
2 |
from transformers import pipeline
|
3 |
from PIL import Image, ImageFilter, ImageOps
|
4 |
import numpy as np
|
|
|
5 |
import cv2
|
6 |
|
7 |
+
# Initialize models with fixed choices
|
8 |
+
segmentation_model = pipeline("image-segmentation", model="nvidia/segformer-b1-finetuned-cityscapes-1024-1024")
|
9 |
+
depth_estimator = pipeline("depth-estimation", model="Intel/zoedepth-nyu-kitti")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
def lens_blur(image, radius):
|
12 |
"""
|
|
|
64 |
- output_image: final composited image.
|
65 |
- mask_image: the mask used (binary for segmentation, normalized depth for depth-based).
|
66 |
"""
|
|
|
|
|
|
|
|
|
67 |
# Ensure image is in RGB mode
|
68 |
input_image = input_image.convert("RGB")
|
69 |
|
|
|
76 |
blur_fn = lambda img, rad: img.filter(ImageFilter.GaussianBlur(radius=rad))
|
77 |
|
78 |
if method == "Segmented Background Blur":
|
79 |
+
# Use segmentation to obtain a foreground mask
|
80 |
results = segmentation_model(input_image)
|
81 |
+
# Assume the last result is the main foreground object
|
82 |
foreground_mask = results[-1]["mask"]
|
83 |
+
# Ensure the mask is grayscale
|
84 |
foreground_mask = foreground_mask.convert("L")
|
85 |
+
# Threshold to create a binary mask
|
86 |
binary_mask = foreground_mask.point(lambda p: 255 if p > 128 else 0)
|
87 |
|
88 |
+
# Blur the background using the selected blur function
|
89 |
blurred_background = blur_fn(input_image, blur_intensity)
|
90 |
|
91 |
+
# Composite the final image: keep foreground and use blurred background elsewhere
|
92 |
output_image = Image.composite(input_image, blurred_background, binary_mask)
|
93 |
mask_image = binary_mask
|
94 |
|
95 |
elif method == "Depth-based Variable Blur":
|
96 |
+
# Generate depth map
|
97 |
depth_results = depth_estimator(input_image)
|
98 |
depth_map = depth_results["depth"]
|
99 |
|
|
|
103 |
normalized_depth = (norm * 255).astype(np.uint8)
|
104 |
mask_image = Image.fromarray(normalized_depth)
|
105 |
|
106 |
+
# Create fully blurred version using the selected blur function
|
107 |
blurred_image = blur_fn(input_image, blur_intensity)
|
108 |
|
109 |
+
# Convert images to arrays for blending
|
110 |
orig_np = np.array(input_image).astype(np.float32)
|
111 |
blur_np = np.array(blurred_image).astype(np.float32)
|
112 |
+
# Reshape mask for broadcasting
|
113 |
alpha = normalized_depth[..., np.newaxis] / 255.0
|
114 |
|
115 |
+
# Blend pixels: 0 = original; 1 = fully blurred
|
116 |
blended_np = (1 - alpha) * orig_np + alpha * blur_np
|
117 |
blended_np = np.clip(blended_np, 0, 255).astype(np.uint8)
|
118 |
output_image = Image.fromarray(blended_np)
|
|
|
127 |
with gr.Blocks() as demo:
|
128 |
gr.Markdown("## Image Processing App: Segmentation & Depth-based Blur")
|
129 |
|
130 |
+
with gr.Row():
|
131 |
+
with gr.Column():
|
132 |
+
input_image = gr.Image(label="Input Image", type="pil")
|
133 |
+
method = gr.Radio(label="Processing Method",
|
134 |
+
choices=["Segmented Background Blur", "Depth-based Variable Blur"],
|
135 |
+
value="Segmented Background Blur")
|
136 |
+
blur_intensity = gr.Slider(label="Blur Intensity (Maximum Blur Radius)",
|
137 |
+
minimum=1, maximum=30, step=1, value=15)
|
138 |
+
blur_type = gr.Dropdown(label="Blur Type",
|
139 |
+
choices=["Gaussian Blur", "Lens Blur"],
|
140 |
+
value="Gaussian Blur")
|
141 |
+
run_button = gr.Button("Process Image")
|
142 |
+
with gr.Column():
|
143 |
+
output_image = gr.Image(label="Output Image")
|
144 |
+
mask_output = gr.Image(label="Mask")
|
145 |
+
|
146 |
+
# Set up event handler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
run_button.click(
|
148 |
fn=process_image,
|
149 |
inputs=[input_image, method, blur_intensity, blur_type],
|
150 |
outputs=[output_image, mask_output]
|
151 |
)
|
152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
# Launch the app
|
154 |
demo.launch()
|