Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
from PIL import Image, ImageFilter
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# Load models from Hugging Face
|
7 |
+
segmentation_model = pipeline("image-segmentation", model="nvidia/segformer-b1-finetuned-cityscapes-1024-1024")
|
8 |
+
depth_estimator = pipeline("depth-estimation", model="Intel/zoedepth-nyu-kitti")
|
9 |
+
|
10 |
+
def process_image(image, blur_type, sigma):
|
11 |
+
# Step 1: Perform segmentation
|
12 |
+
segmentation_results = segmentation_model(image)
|
13 |
+
foreground_mask = segmentation_results[-1]["mask"]
|
14 |
+
|
15 |
+
# Step 2: Apply Gaussian blur to background
|
16 |
+
blurred_background = image.filter(ImageFilter.GaussianBlur(sigma))
|
17 |
+
segmented_output = Image.composite(image, blurred_background, foreground_mask)
|
18 |
+
|
19 |
+
# Step 3: Perform depth estimation
|
20 |
+
depth_results = depth_estimator(image)
|
21 |
+
depth_map = depth_results["depth"]
|
22 |
+
|
23 |
+
# Step 4: Normalize depth map values
|
24 |
+
depth_array = np.array(depth_map)
|
25 |
+
normalized_depth = (depth_array - np.min(depth_array)) / (np.max(depth_array) - np.min(depth_array)) * 255
|
26 |
+
normalized_depth_image = Image.fromarray(normalized_depth.astype('uint8'))
|
27 |
+
|
28 |
+
# Step 5: Apply variable Gaussian blur based on depth map (Lens Blur)
|
29 |
+
if blur_type == "Lens Blur":
|
30 |
+
variable_blur_image = image.copy()
|
31 |
+
for x in range(variable_blur_image.width):
|
32 |
+
for y in range(variable_blur_image.height):
|
33 |
+
blur_intensity = normalized_depth[y, x] / 255 * sigma # Scale blur intensity by depth value
|
34 |
+
pixel_value = image.getpixel((x, y))
|
35 |
+
variable_blur_image.putpixel((x, y), tuple(int(p * blur_intensity) for p in pixel_value))
|
36 |
+
output_image = variable_blur_image
|
37 |
+
else:
|
38 |
+
output_image = segmented_output
|
39 |
+
|
40 |
+
return segmented_output, normalized_depth_image, output_image
|
41 |
+
|
42 |
+
# Create Gradio interface
|
43 |
+
app = gr.Interface(
|
44 |
+
fn=process_image,
|
45 |
+
inputs=[
|
46 |
+
gr.Image(type="pil", label="Upload Image"),
|
47 |
+
gr.Radio(["Gaussian Blur", "Lens Blur"], label="Blur Type", value="Gaussian Blur"),
|
48 |
+
gr.Slider(0, 50, step=1, label="Blur Intensity (Sigma)", value=15)
|
49 |
+
],
|
50 |
+
outputs=[
|
51 |
+
gr.Image(type="pil", label="Segmented Output with Background Blur"),
|
52 |
+
gr.Image(type="pil", label="Depth Map Visualization"),
|
53 |
+
gr.Image(type="pil", label="Final Output with Selected Blur")
|
54 |
+
],
|
55 |
+
title="Vision Transformer Segmentation & Depth-Based Blur Effects",
|
56 |
+
description="Upload an image and select the type of blur effect (Gaussian or Lens). Adjust the blur intensity using the slider."
|
57 |
+
)
|
58 |
+
|
59 |
+
app.launch()
|