BLURB / app.py
SOSSY's picture
Update app.py
38bf607 verified
raw
history blame
4.35 kB
import gradio as gr
from transformers import pipeline
from PIL import Image, ImageFilter
import numpy as np
# Initialize models with fixed choices
segmentation_model = pipeline("image-segmentation", model="nvidia/segformer-b1-finetuned-cityscapes-1024-1024")
depth_estimator = pipeline("depth-estimation", model="Intel/zoedepth-nyu-kitti")
def process_image(input_image, method, blur_intensity):
"""
Process the input image using one of two methods:
1. Segmentation Blur Model:
- Uses segmentation to extract a foreground mask.
- Applies Gaussian blur to the background.
- Composites the final image.
2. Monocular Depth Estimation Model:
- Uses depth estimation to generate a depth map.
- Normalizes the depth map to be used as a blending mask.
- Blends a fully blurred version with the original image.
Returns:
- output_image: final composited image.
- mask_image: the mask used (binary for segmentation, normalized depth for depth-based).
"""
# Ensure image is in RGB mode
input_image = input_image.convert("RGB")
if method == "Segmentation Blur Model":
# Use segmentation to obtain a foreground mask
results = segmentation_model(input_image)
# Assume the last result is the main foreground object
foreground_mask = results[-1]["mask"]
# Ensure the mask is grayscale
foreground_mask = foreground_mask.convert("L")
# Threshold to create a binary mask
binary_mask = foreground_mask.point(lambda p: 255 if p > 128 else 0)
# Blur the background using Gaussian blur
blurred_background = input_image.filter(ImageFilter.GaussianBlur(radius=blur_intensity))
# Composite the final image: keep foreground and use blurred background elsewhere
output_image = Image.composite(input_image, blurred_background, binary_mask)
mask_image = binary_mask
elif method == "Monocular Depth Estimation Model":
# Generate depth map
depth_results = depth_estimator(input_image)
depth_map = depth_results["depth"]
# Convert depth map to numpy array and normalize to [0, 255]
depth_array = np.array(depth_map).astype(np.float32)
norm = (depth_array - depth_array.min()) / (depth_array.max() - depth_array.min() + 1e-8)
normalized_depth = (norm * 255).astype(np.uint8)
mask_image = Image.fromarray(normalized_depth)
# Create fully blurred version using Gaussian blur
blurred_image = input_image.filter(ImageFilter.GaussianBlur(radius=blur_intensity))
# Convert images to arrays for blending
orig_np = np.array(input_image).astype(np.float32)
blur_np = np.array(blurred_image).astype(np.float32)
# Reshape mask for broadcasting
alpha = normalized_depth[..., np.newaxis] / 255.0
# Blend pixels: 0 = original; 1 = fully blurred
blended_np = (1 - alpha) * orig_np + alpha * blur_np
blended_np = np.clip(blended_np, 0, 255).astype(np.uint8)
output_image = Image.fromarray(blended_np)
else:
output_image = input_image
mask_image = input_image.convert("L")
return output_image, mask_image
# Build a Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## Image Processing App: Segmentation & Depth-based Blur")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
method = gr.Radio(label="Processing Method",
choices=["Segmentation Blur Model", "Monocular Depth Estimation Model"],
value="Segmentation Blur Model")
blur_intensity = gr.Slider(label="Blur Intensity (sigma)",
minimum=1, maximum=30, step=1, value=15)
run_button = gr.Button("Process Image")
with gr.Column():
output_image = gr.Image(label="Output Image")
mask_output = gr.Image(label="Mask")
# Set up event handler
run_button.click(
fn=process_image,
inputs=[input_image, method, blur_intensity],
outputs=[output_image, mask_output]
)
# Launch the app
demo.launch()