Spaces:
Sleeping
Sleeping
import transformers | |
import torch | |
import torchvision | |
from transformers import TrainingArguments, Trainer | |
from transformers import ViTImageProcessor | |
from transformers import ViTForImageClassification | |
from torch.utils.data import DataLoader | |
from datasets import load_dataset | |
from torchvision.transforms import (CenterCrop, | |
Compose, | |
Normalize, | |
RandomHorizontalFlip, | |
RandomResizedCrop, | |
Resize, | |
ToTensor) | |
from transformers import ViTImageProcessor, ViTForImageClassification | |
from PIL import Image | |
import torch | |
import torch.nn.functional as F | |
import time | |
import gradio as gr | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
processor = ViTImageProcessor.from_pretrained("ViT_LCZs_v3",local_files_only=True) | |
model = ViTForImageClassification.from_pretrained("ViT_LCZs_v3",local_files_only=True).to(device) | |
import os, glob | |
examples_dir = './samples' | |
example_files = glob.glob(os.path.join(examples_dir, '*.jpg')) | |
def classify_image(image): | |
with torch.no_grad(): | |
model.eval() | |
inputs = feature_extractor(images=image, return_tensors="pt") | |
outputs = model(**inputs) | |
logits = outputs.logits | |
prob = torch.nn.functional.softmax(logits, dim=1) | |
top10_prob, top10_indices = torch.topk(prob, 10) | |
top10_confidences = {} | |
for i in range(10): | |
top10_confidences[model.config.id2label[int(top10_indices[0][i])]] = float(top10_prob[0][i]) | |
return top10_confidences #confidences | |
with gr.Blocks(title="ViT LCZ Classification - ClassCat", | |
css=".gradio-container {background:white;}" | |
) as demo: | |
gr.HTML("""<div style="font-family:'Times New Roman', 'Serif'; font-size:16pt; font-weight:bold; text-align:center; color:royalblue;">LCZ Classification with ViT</div>""") | |
with gr.Row(): | |
input_image = gr.Image(type="pil", image_mode="RGB", shape=(224, 224)) | |
output_label=gr.Label(label="Probabilities", num_top_classes=3) | |
send_btn = gr.Button("Infer") | |
send_btn.click(fn=classify_image, inputs=input_image, outputs=output_label) | |
with gr.Row(): | |
gr.Examples(['data/closed_highrise.png'], label='Sample images : cat', inputs=input_image) | |
gr.Examples(['data/open_lowrise.png'], label='cheetah', inputs=input_image) | |
gr.Examples(['data/dense_trees.png'], label='hotdog', inputs=input_image) | |
gr.Examples(['data/large_lowrise.png'], label='lion', inputs=input_image) | |
demo.launch(debug=True) |