# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. import torch import xatlas import trimesh import cv2 import numpy as np import nvdiffrast.torch as dr from PIL import Image def save_obj(pointnp_px3, facenp_fx3, colornp_px3, fpath): mesh = trimesh.Trimesh( vertices=pointnp_px3, faces=facenp_fx3, vertex_colors=colornp_px3, ) mesh.export(fpath, 'obj') def save_glb(pointnp_px3, facenp_fx3, colornp_px3, fpath): mesh = trimesh.Trimesh( vertices=pointnp_px3, faces=facenp_fx3, vertex_colors=colornp_px3, ) mesh.export(fpath, 'glb') def save_obj_with_mtl(pointnp_px3, tcoords_px2, facenp_fx3, facetex_fx3, texmap_hxwx3, fname): import os fol, na = os.path.split(fname) na, _ = os.path.splitext(na) matname = '%s/%s.mtl' % (fol, na) fid = open(matname, 'w') fid.write('newmtl material_0\n') fid.write('Kd 1 1 1\n') fid.write('Ka 0 0 0\n') fid.write('Ks 0.4 0.4 0.4\n') fid.write('Ns 10\n') fid.write('illum 2\n') fid.write('map_Kd %s.png\n' % na) fid.close() #### fid = open(fname, 'w') fid.write('mtllib %s.mtl\n' % na) for pidx, p in enumerate(pointnp_px3): pp = p fid.write('v %f %f %f\n' % (pp[0], pp[1], pp[2])) for pidx, p in enumerate(tcoords_px2): pp = p fid.write('vt %f %f\n' % (pp[0], pp[1])) fid.write('usemtl material_0\n') for i, f in enumerate(facenp_fx3): f1 = f + 1 f2 = facetex_fx3[i] + 1 fid.write('f %d/%d %d/%d %d/%d\n' % (f1[0], f2[0], f1[1], f2[1], f1[2], f2[2])) fid.close() # save texture map lo, hi = 0, 1 img = np.asarray(texmap_hxwx3, dtype=np.float32) img = (img - lo) * (255 / (hi - lo)) img = img.clip(0, 255) mask = np.sum(img.astype(np.float32), axis=-1, keepdims=True) mask = (mask <= 3.0).astype(np.float32) kernel = np.ones((3, 3), 'uint8') dilate_img = cv2.dilate(img, kernel, iterations=1) img = img * (1 - mask) + dilate_img * mask img = img.clip(0, 255).astype(np.uint8) Image.fromarray(np.ascontiguousarray(img[::-1, :, :]), 'RGB').save(f'{fol}/{na}.png') def loadobj(meshfile): v = [] f = [] meshfp = open(meshfile, 'r') for line in meshfp.readlines(): data = line.strip().split(' ') data = [da for da in data if len(da) > 0] if len(data) != 4: continue if data[0] == 'v': v.append([float(d) for d in data[1:]]) if data[0] == 'f': data = [da.split('/')[0] for da in data] f.append([int(d) for d in data[1:]]) meshfp.close() # torch need int64 facenp_fx3 = np.array(f, dtype=np.int64) - 1 pointnp_px3 = np.array(v, dtype=np.float32) return pointnp_px3, facenp_fx3 def loadobjtex(meshfile): v = [] vt = [] f = [] ft = [] meshfp = open(meshfile, 'r') for line in meshfp.readlines(): data = line.strip().split(' ') data = [da for da in data if len(da) > 0] if not ((len(data) == 3) or (len(data) == 4) or (len(data) == 5)): continue if data[0] == 'v': assert len(data) == 4 v.append([float(d) for d in data[1:]]) if data[0] == 'vt': if len(data) == 3 or len(data) == 4: vt.append([float(d) for d in data[1:3]]) if data[0] == 'f': data = [da.split('/') for da in data] if len(data) == 4: f.append([int(d[0]) for d in data[1:]]) ft.append([int(d[1]) for d in data[1:]]) elif len(data) == 5: idx1 = [1, 2, 3] data1 = [data[i] for i in idx1] f.append([int(d[0]) for d in data1]) ft.append([int(d[1]) for d in data1]) idx2 = [1, 3, 4] data2 = [data[i] for i in idx2] f.append([int(d[0]) for d in data2]) ft.append([int(d[1]) for d in data2]) meshfp.close() # torch need int64 facenp_fx3 = np.array(f, dtype=np.int64) - 1 ftnp_fx3 = np.array(ft, dtype=np.int64) - 1 pointnp_px3 = np.array(v, dtype=np.float32) uvs = np.array(vt, dtype=np.float32) return pointnp_px3, facenp_fx3, uvs, ftnp_fx3 # ============================================================================================== def interpolate(attr, rast, attr_idx, rast_db=None): return dr.interpolate(attr.contiguous(), rast, attr_idx, rast_db=rast_db, diff_attrs=None if rast_db is None else 'all') def xatlas_uvmap(ctx, mesh_v, mesh_pos_idx, resolution): vmapping, indices, uvs = xatlas.parametrize(mesh_v.detach().cpu().numpy(), mesh_pos_idx.detach().cpu().numpy()) # Convert to tensors indices_int64 = indices.astype(np.uint64, casting='same_kind').view(np.int64) uvs = torch.tensor(uvs, dtype=torch.float32, device=mesh_v.device) mesh_tex_idx = torch.tensor(indices_int64, dtype=torch.int64, device=mesh_v.device) # mesh_v_tex. ture uv_clip = uvs[None, ...] * 2.0 - 1.0 # pad to four component coordinate uv_clip4 = torch.cat((uv_clip, torch.zeros_like(uv_clip[..., 0:1]), torch.ones_like(uv_clip[..., 0:1])), dim=-1) # rasterize rast, _ = dr.rasterize(ctx, uv_clip4, mesh_tex_idx.int(), (resolution, resolution)) # Interpolate world space position gb_pos, _ = interpolate(mesh_v[None, ...], rast, mesh_pos_idx.int()) mask = rast[..., 3:4] > 0 return uvs, mesh_tex_idx, gb_pos, mask