Spaces:
Running
Running
Create utils/fallback_suggester.py
Browse files- utils/fallback_suggester.py +26 -0
utils/fallback_suggester.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# utils/fallback_suggester.py
|
2 |
+
|
3 |
+
import json
|
4 |
+
from sentence_transformers import SentenceTransformer, util
|
5 |
+
|
6 |
+
model = SentenceTransformer("sentence-transformers/paraphrase-mpnet-base-v2")
|
7 |
+
|
8 |
+
with open("fallback_clauses.json", "r", encoding="utf-8") as f:
|
9 |
+
clause_bank = json.load(f)
|
10 |
+
|
11 |
+
clause_labels = list(clause_bank.keys())
|
12 |
+
clause_texts = list(clause_bank.values())
|
13 |
+
clause_embeddings = model.encode(clause_texts, convert_to_tensor=True)
|
14 |
+
|
15 |
+
def suggest_fallback(input_clause):
|
16 |
+
if not input_clause or len(input_clause.strip()) == 0:
|
17 |
+
return "No input clause provided."
|
18 |
+
|
19 |
+
input_embedding = model.encode(input_clause, convert_to_tensor=True)
|
20 |
+
scores = util.cos_sim(input_embedding, clause_embeddings)[0]
|
21 |
+
best_idx = scores.argmax().item()
|
22 |
+
|
23 |
+
label = clause_labels[best_idx]
|
24 |
+
suggestion = clause_texts[best_idx]
|
25 |
+
|
26 |
+
return f"🔹 {label} → {suggestion}"
|