Spaces:
Running
Running
Update utils/translator.py
Browse files- utils/translator.py +67 -22
utils/translator.py
CHANGED
@@ -2,34 +2,26 @@
|
|
2 |
|
3 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
import torch
|
|
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
text = text.replace("\n", " ").strip()
|
16 |
-
chunks = [text[i:i + 512] for i in range(0, len(text), 512)]
|
17 |
-
translated = []
|
18 |
-
|
19 |
-
for chunk in chunks:
|
20 |
-
inputs = tokenizer(chunk, return_tensors="pt", truncation=True, padding=True)
|
21 |
-
with torch.no_grad():
|
22 |
-
outputs = model.generate(**inputs, max_length=512, num_beams=4)
|
23 |
-
translated.append(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
24 |
|
25 |
-
|
26 |
|
27 |
def clean_text(text):
|
28 |
return text.replace("\n", " ").replace(" ", " ").strip()
|
29 |
|
30 |
def chunk_text(text, max_chunk_chars=500):
|
31 |
"""
|
32 |
-
πͺ
|
33 |
"""
|
34 |
words = text.split()
|
35 |
chunks = []
|
@@ -46,9 +38,32 @@ def chunk_text(text, max_chunk_chars=500):
|
|
46 |
|
47 |
return chunks
|
48 |
|
|
|
|
|
49 |
def translate_to_portuguese(text):
|
50 |
"""
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
"""
|
53 |
if not text.strip():
|
54 |
return "No input provided."
|
@@ -58,7 +73,37 @@ def translate_to_portuguese(text):
|
|
58 |
|
59 |
translated_chunks = []
|
60 |
for chunk in chunks:
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
63 |
|
64 |
return " ".join(translated_chunks)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
import torch
|
5 |
+
from docx import Document
|
6 |
|
7 |
+
# ========== Load EN β PT model ==========
|
8 |
+
en_pt_model_name = "unicamp-dl/translation-en-pt-t5"
|
9 |
+
tokenizer_en_pt = AutoTokenizer.from_pretrained(en_pt_model_name)
|
10 |
+
model_en_pt = AutoModelForSeq2SeqLM.from_pretrained(en_pt_model_name)
|
11 |
|
12 |
+
# ========== Load PT β EN model ==========
|
13 |
+
pt_en_model_name = "unicamp-dl/translation-pt-en-t5"
|
14 |
+
tokenizer_pt_en = AutoTokenizer.from_pretrained(pt_en_model_name)
|
15 |
+
model_pt_en = AutoModelForSeq2SeqLM.from_pretrained(pt_en_model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
# ========== Text Cleaning & Chunking ==========
|
18 |
|
19 |
def clean_text(text):
|
20 |
return text.replace("\n", " ").replace(" ", " ").strip()
|
21 |
|
22 |
def chunk_text(text, max_chunk_chars=500):
|
23 |
"""
|
24 |
+
πͺ Break long input into token-safe chunks.
|
25 |
"""
|
26 |
words = text.split()
|
27 |
chunks = []
|
|
|
38 |
|
39 |
return chunks
|
40 |
|
41 |
+
# ========== Translation Functions ==========
|
42 |
+
|
43 |
def translate_to_portuguese(text):
|
44 |
"""
|
45 |
+
πΊπΈ β‘οΈ π§π· Translate English to Portuguese.
|
46 |
+
"""
|
47 |
+
if not text.strip():
|
48 |
+
return "No input provided."
|
49 |
+
|
50 |
+
text = clean_text(text)
|
51 |
+
chunks = chunk_text(text)
|
52 |
+
|
53 |
+
translated_chunks = []
|
54 |
+
for chunk in chunks:
|
55 |
+
inputs = tokenizer_en_pt(chunk, return_tensors="pt", truncation=True, padding=True)
|
56 |
+
with torch.no_grad():
|
57 |
+
outputs = model_en_pt.generate(**inputs, max_length=512, num_beams=4)
|
58 |
+
translated = tokenizer_en_pt.decode(outputs[0], skip_special_tokens=True)
|
59 |
+
translated_chunks.append(translated)
|
60 |
+
|
61 |
+
return " ".join(translated_chunks)
|
62 |
+
|
63 |
+
|
64 |
+
def translate_to_english(text):
|
65 |
+
"""
|
66 |
+
π§π· β‘οΈ πΊπΈ Translate Portuguese to English.
|
67 |
"""
|
68 |
if not text.strip():
|
69 |
return "No input provided."
|
|
|
73 |
|
74 |
translated_chunks = []
|
75 |
for chunk in chunks:
|
76 |
+
inputs = tokenizer_pt_en(chunk, return_tensors="pt", truncation=True, padding=True)
|
77 |
+
with torch.no_grad():
|
78 |
+
outputs = model_pt_en.generate(**inputs, max_length=512, num_beams=4)
|
79 |
+
translated = tokenizer_pt_en.decode(outputs[0], skip_special_tokens=True)
|
80 |
+
translated_chunks.append(translated)
|
81 |
|
82 |
return " ".join(translated_chunks)
|
83 |
+
|
84 |
+
# ========== Bilingual Layout ==========
|
85 |
+
|
86 |
+
def bilingual_clauses(english_text):
|
87 |
+
"""
|
88 |
+
π Generate side-by-side bilingual clauses.
|
89 |
+
"""
|
90 |
+
clauses_en = chunk_text(clean_text(english_text), max_chunk_chars=300)
|
91 |
+
clauses_pt = [translate_to_portuguese(c) for c in clauses_en]
|
92 |
+
|
93 |
+
bilingual = []
|
94 |
+
for en, pt in zip(clauses_en, clauses_pt):
|
95 |
+
bilingual.append(f"π EN: {en}\nπ PT: {pt}\n" + "-" * 60)
|
96 |
+
return "\n\n".join(bilingual)
|
97 |
+
|
98 |
+
# ========== Export to DOCX ==========
|
99 |
+
|
100 |
+
def export_to_word(text, filename="translated_contract.docx"):
|
101 |
+
"""
|
102 |
+
π Export text block to Word document.
|
103 |
+
"""
|
104 |
+
doc = Document()
|
105 |
+
doc.add_heading("Legal Translation Output", level=1)
|
106 |
+
for para in text.split("\n\n"):
|
107 |
+
doc.add_paragraph(para)
|
108 |
+
doc.save(filename)
|
109 |
+
return filename
|