Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -180,9 +180,58 @@ def do_prediction(model_name, img):
|
|
180 |
label_p_pred = model.predict(img_in, verbose=0)
|
181 |
num_col = np.argmax(label_p_pred[0]) + 1
|
182 |
return "Found {} columns".format(num_col), None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
# bitmap output
|
185 |
-
case "SBB/eynollah-binarization" | "SBB/eynollah-
|
186 |
|
187 |
img_height_model=model.layers[len(model.layers)-1].output_shape[1]
|
188 |
img_width_model=model.layers[len(model.layers)-1].output_shape[2]
|
@@ -304,20 +353,6 @@ def do_prediction(model_name, img):
|
|
304 |
|
305 |
prediction_true = prediction_true.astype(np.uint8)
|
306 |
|
307 |
-
'''
|
308 |
-
img = img / float(255.0)
|
309 |
-
image = resize_image(image, 224,448)
|
310 |
-
prediction = model.predict(image.reshape(1,224,448,image.shape[2]))
|
311 |
-
prediction = tf.squeeze(tf.round(prediction))
|
312 |
-
|
313 |
-
prediction = np.argmax(prediction,axis=2)
|
314 |
-
|
315 |
-
prediction = np.repeat(prediction[:, :, np.newaxis]*255, 3, axis=2)
|
316 |
-
print(prediction.shape)
|
317 |
-
|
318 |
-
'''
|
319 |
-
#prediction_true = prediction_true * -1
|
320 |
-
#prediction_true = prediction_true + 1
|
321 |
return "No numerical output", visualize_model_output(prediction_true,img_org, model_name)
|
322 |
|
323 |
# catch-all (we should not reach this)
|
|
|
180 |
label_p_pred = model.predict(img_in, verbose=0)
|
181 |
num_col = np.argmax(label_p_pred[0]) + 1
|
182 |
return "Found {} columns".format(num_col), None
|
183 |
+
|
184 |
+
case "SBB/eynollah-page-extraction":
|
185 |
+
|
186 |
+
img_height_model = model.layers[len(model.layers) - 1].output_shape[1]
|
187 |
+
img_width_model = model.layers[len(model.layers) - 1].output_shape[2]
|
188 |
+
|
189 |
+
img_h_page = img.shape[0]
|
190 |
+
img_w_page = img.shape[1]
|
191 |
+
img = img / float(255.0)
|
192 |
+
img = resize_image(img, img_height_model, img_width_model)
|
193 |
+
|
194 |
+
label_p_pred = model.predict(img.reshape(1, img.shape[0], img.shape[1], img.shape[2]),
|
195 |
+
verbose=0)
|
196 |
+
|
197 |
+
seg = np.argmax(label_p_pred, axis=3)[0]
|
198 |
+
seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2)
|
199 |
+
prediction_true = resize_image(seg_color, img_h_page, img_w_page)
|
200 |
+
prediction_true = prediction_true.astype(np.uint8)
|
201 |
+
|
202 |
+
imgray = cv2.cvtColor(prediction_true, cv2.COLOR_BGR2GRAY)
|
203 |
+
_, thresh = cv2.threshold(imgray, 0, 255, 0)
|
204 |
+
#thresh = cv2.dilate(thresh, KERNEL, iterations=3)
|
205 |
+
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
206 |
+
|
207 |
+
if len(contours)>0:
|
208 |
+
cnt_size = np.array([cv2.contourArea(contours[j]) for j in range(len(contours))])
|
209 |
+
cnt = contours[np.argmax(cnt_size)]
|
210 |
+
x, y, w, h = cv2.boundingRect(cnt)
|
211 |
+
if x <= 30:
|
212 |
+
w += x
|
213 |
+
x = 0
|
214 |
+
if (img.shape[1] - (x + w)) <= 30:
|
215 |
+
w = w + (img.shape[1] - (x + w))
|
216 |
+
if y <= 30:
|
217 |
+
h = h + y
|
218 |
+
y = 0
|
219 |
+
if (img.shape[0] - (y + h)) <= 30:
|
220 |
+
h = h + (img.shape[0] - (y + h))
|
221 |
+
|
222 |
+
box = [x, y, w, h]
|
223 |
+
|
224 |
+
img_border = np.zeros((prediction_true.shape[0],prediction_true.shape[1]))
|
225 |
+
img_border[y:y+h, x:x+w] = 1
|
226 |
+
else:
|
227 |
+
img_border = np.zeros((prediction_true.shape[0],prediction_true.shape[1]))
|
228 |
+
img_border[:, :] = 1
|
229 |
+
|
230 |
+
return "No numerical output", visualize_model_output(img_border,img, model_name)
|
231 |
+
|
232 |
|
233 |
# bitmap output
|
234 |
+
case "SBB/eynollah-binarization" | "SBB/eynollah-textline" | "SBB/eynollah-textline_light" | "SBB/eynollah-enhancement" | "SBB/eynollah-tables" | "SBB/eynollah-main-regions" | "SBB/eynollah-main-regions-aug-rotation" | "SBB/eynollah-main-regions-aug-scaling" | "SBB/eynollah-main-regions-ensembled" | "SBB/eynollah-full-regions-1column" | "SBB/eynollah-full-regions-3pluscolumn":
|
235 |
|
236 |
img_height_model=model.layers[len(model.layers)-1].output_shape[1]
|
237 |
img_width_model=model.layers[len(model.layers)-1].output_shape[2]
|
|
|
353 |
|
354 |
prediction_true = prediction_true.astype(np.uint8)
|
355 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
356 |
return "No numerical output", visualize_model_output(prediction_true,img_org, model_name)
|
357 |
|
358 |
# catch-all (we should not reach this)
|