from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch class OmographModel: def __init__(self, allow_cuda=True) -> None: self.device = torch.device('cuda' if torch.cuda.is_available() and allow_cuda else 'cpu') def load(self, path): self.nli_model = AutoModelForSequenceClassification.from_pretrained(path, torch_dtype=torch.bfloat16).to(self.device) self.tokenizer = AutoTokenizer.from_pretrained(path) def classify(self, text, hypotheses): encodings = self.tokenizer.batch_encode_plus([(text, hyp) for hyp in hypotheses], return_tensors='pt', padding=True) input_ids = encodings['input_ids'].to(self.device) with torch.no_grad(): logits = self.nli_model(input_ids)[0] entail_contradiction_logits = logits[:,[0,2]] probs = entail_contradiction_logits.softmax(dim=1) prob_label_is_true = [float(p[1]) for p in probs] return hypotheses[prob_label_is_true.index(max(prob_label_is_true))]