import streamlit as st import pickle import requests # function to fetch the poster def fetch_poster(movie_id): response = requests.get(f"https://api.themoviedb.org/3/movie/{movie_id}?api_key=bb1678d9f4f581a1a07e8161ffe487a0&language=en-US%27") data = response.json() if 'poster_path' in data: return "https://image.tmdb.org/t/p/w500/" + data['poster_path'] else: return None movielist_of_5000_movies = pickle.load(open('movies.pkl', 'rb')) similarityArray = pickle.load(open('similarityArray.pkl', 'rb')) def recommended(movie): movie_index = movielist_of_5000_movies[movielist_of_5000_movies['title'] == movie].index[0] distances = similarityArray[movie_index] movie_list = sorted(enumerate(distances), reverse=True, key=lambda x: x[1])[1:11] recommended_movies = [] recommended_movies_posters = [] for i in movie_list: recommended_movies.append(movielist_of_5000_movies.iloc[i[0]].title) recommended_movies_posters.append(fetch_poster(movielist_of_5000_movies.iloc[i[0]].movie_id)) return recommended_movies, recommended_movies_posters st.title("Movie Recommendation System") st.subheader("The is a Movie Recommendation System. I have created this for fun") st.caption("I hope you all will like it!!!") selected_movie = st.selectbox( 'Please Select the Movie you like to get Recommendation ', movielist_of_5000_movies['title'].values) if st.button('Recommend'): st.write('The Recommended Movies for ', selected_movie, " are: ") recommendations, posters = recommended(selected_movie) col1, col2 = st.columns(2) for i in range(5): with col1: st.text(recommendations[i]) st.image(posters[i]) for i in range(5, 10): with col2: st.text(recommendations[i]) st.image(posters[i])