import streamlit as st from PIL import Image import tensorflow as tf import numpy as np import io # Load your trained model custom_objects = {'BatchNormalization': tf.keras.layers.BatchNormalization} model = tf.keras.models.load_model('ResNet152V2.h5') # Define class labels of the animals class_labels = ['Butterfly', 'Cat', 'Cow', 'Dog', 'Hen'] # Streamlit App st.title("Image Classification App") # Upload image through Streamlit interface uploaded_file = st.file_uploader("Choose an image...", type="jpg") if uploaded_file is not None: # Read the bytes of the uploaded file image_bytes = uploaded_file.read() # Convert the bytes to a PIL Image image = Image.open(io.BytesIO(image_bytes)) st.image(image, caption="Uploaded Image", use_column_width=True) # Preprocess the image for the model image = image.resize((256, 256)) # Adjust size as needed image_array = tf.keras.preprocessing.image.img_to_array(image) image_array = np.expand_dims(image_array, axis=0) image_array /= 255.0 # Normalize the pixel values to be between 0 and 1 # Make predictions predictions = model.predict(image_array) predicted_class = np.argmax(predictions[0]) confidence = predictions[0][predicted_class] # Display the predicted class and confidence st.write("Prediction:") st.write(f"Class: {class_labels[predicted_class]}, Confidence: {confidence:.2f}")