Spaces:
Sleeping
Sleeping
import streamlit as st | |
from PIL import Image | |
import tensorflow as tf | |
import numpy as np | |
import io | |
# Load your trained model | |
custom_objects = {'BatchNormalization': tf.keras.layers.BatchNormalization} | |
# model = tf.keras.models.load_model('ResNet152V2.h5') | |
# Define class labels of the animals | |
class_labels = ['Butterfly', 'Cat', 'Cow', 'Dog', 'Hen'] | |
# Streamlit App | |
st.title("Image Classification App") | |
# Upload image through Streamlit interface | |
uploaded_file = st.file_uploader("Choose an image...", type="jpg") | |
# | |
# if uploaded_file is not None: | |
# # Read the bytes of the uploaded file | |
# image_bytes = uploaded_file.read() | |
# | |
# # Convert the bytes to a PIL Image | |
# image = Image.open(io.BytesIO(image_bytes)) | |
# st.image(image, caption="Uploaded Image", use_column_width=True) | |
# | |
# # Preprocess the image for the model | |
# image = image.resize((256, 256)) # Adjust size as needed | |
# image_array = tf.keras.preprocessing.image.img_to_array(image) | |
# image_array = np.expand_dims(image_array, axis=0) | |
# image_array /= 255.0 # Normalize the pixel values to be between 0 and 1 | |
# | |
# # Make predictions | |
# predictions = model.predict(image_array) | |
# predicted_class = np.argmax(predictions[0]) | |
# confidence = predictions[0][predicted_class] | |
# | |
# # Display the predicted class and confidence | |
# st.write("Prediction:") | |
# st.write(f"Class: {class_labels[predicted_class]}, Confidence: {confidence:.2f}") | |