Spaces:
Sleeping
Sleeping
Create main.py
Browse files
main.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, Request
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
|
5 |
+
app = FastAPI()
|
6 |
+
|
7 |
+
MODEL_NAME = "microsoft/Phi-3-mini-4k-instruct"
|
8 |
+
|
9 |
+
@app.on_event("startup")
|
10 |
+
async def load_model():
|
11 |
+
global model, tokenizer
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
13 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map="auto", torch_dtype=torch.float32)
|
14 |
+
|
15 |
+
@app.post("/inference")
|
16 |
+
async def inference(request: Request):
|
17 |
+
data = await request.json()
|
18 |
+
prompt = data.get("prompt", "")
|
19 |
+
if not prompt:
|
20 |
+
return {"error": "No prompt provided"}
|
21 |
+
|
22 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cpu")
|
23 |
+
outputs = model.generate(**inputs, max_length=200)
|
24 |
+
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
25 |
+
return {"response": result}
|