Spaces:
Runtime error
Runtime error
Upload 4 files
Browse files- app.py +58 -0
- keras_model.h5 +3 -0
- labels.txt +5 -0
- requirements.txt +12 -0
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask,render_template
|
2 |
+
from flask_socketio import SocketIO,emit
|
3 |
+
import base64
|
4 |
+
import numpy as np
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
from keras.models import load_model
|
8 |
+
|
9 |
+
|
10 |
+
app = Flask(__name__)
|
11 |
+
app.config['SECRET_KEY'] = 'secret!'
|
12 |
+
socket = SocketIO(app,async_mode="eventlet")
|
13 |
+
|
14 |
+
|
15 |
+
# load model and labels
|
16 |
+
np.set_printoptions(suppress=True)
|
17 |
+
model = load_model("keras_Model.h5", compile=False)
|
18 |
+
class_names = open("labels.txt", "r").readlines()
|
19 |
+
|
20 |
+
def base64_to_image(base64_string):
|
21 |
+
# Extract the base64 encoded binary data from the input string
|
22 |
+
base64_data = base64_string.split(",")[1]
|
23 |
+
# Decode the base64 data to bytes
|
24 |
+
image_bytes = base64.b64decode(base64_data)
|
25 |
+
# Convert the bytes to numpy array
|
26 |
+
image_array = np.frombuffer(image_bytes, dtype=np.uint8)
|
27 |
+
# Decode the numpy array as an image using OpenCV
|
28 |
+
image = cv2.imdecode(image_array, cv2.IMREAD_COLOR)
|
29 |
+
return image
|
30 |
+
|
31 |
+
@socket.on("connect")
|
32 |
+
def test_connect():
|
33 |
+
print("Connected")
|
34 |
+
emit("my response", {"data": "Connected"})
|
35 |
+
|
36 |
+
@socket.on("image")
|
37 |
+
def receive_image(image):
|
38 |
+
# Decode the base64-encoded image data
|
39 |
+
image = base64_to_image(image)
|
40 |
+
image = cv2.resize(image, (224, 224), interpolation=cv2.INTER_AREA)
|
41 |
+
# emit("processed_image", image)
|
42 |
+
# Make the image a numpy array and reshape it to the models input shape.
|
43 |
+
image = np.asarray(image, dtype=np.float32).reshape(1, 224, 224, 3)
|
44 |
+
image = (image / 127.5) - 1
|
45 |
+
# Predicts the model
|
46 |
+
prediction = model.predict(image)
|
47 |
+
index = np.argmax(prediction)
|
48 |
+
class_name = class_names[index]
|
49 |
+
confidence_score = prediction[0][index]
|
50 |
+
emit("result",{"name":str(class_name),"score":str(confidence_score)})
|
51 |
+
|
52 |
+
@app.route("/")
|
53 |
+
def home():
|
54 |
+
return render_template("index.html")
|
55 |
+
|
56 |
+
if __name__ == '__main__':
|
57 |
+
# app.run(debug=True)
|
58 |
+
socket.run(app, debug=True,port=8080,host='0.0.0.0')
|
keras_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:039edc16f4f5b7d2b775c7d9882a75a27c22f23d5697019cfc3fe7b89bafe176
|
3 |
+
size 2456608
|
labels.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
0 Tom_Cruise
|
2 |
+
1 Will_Smith
|
3 |
+
2 RDJ
|
4 |
+
3 Rohit
|
5 |
+
4 Jennifer_lawrence
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Flask-SocketIO
|
2 |
+
python-engineio
|
3 |
+
python-socketio
|
4 |
+
Flask
|
5 |
+
Werkzeug
|
6 |
+
opencv_python
|
7 |
+
numpy
|
8 |
+
gunicorn
|
9 |
+
eventlet
|
10 |
+
face-recognition
|
11 |
+
dlib
|
12 |
+
tensorflow
|