Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- best (1).pt +3 -0
- sample.py +55 -0
best (1).pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b3dbe7873c29c002885d80f22a0617585be6a70766ad7585dfec5b57548e9da2
|
3 |
+
size 52035329
|
sample.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
from torchvision import transforms
|
5 |
+
|
6 |
+
# Load the YOLO model
|
7 |
+
@st.cache
|
8 |
+
def load_model():
|
9 |
+
# Replace 'model.pt' with the path to your YOLO model file
|
10 |
+
model = torch.load('best.pt')
|
11 |
+
return model
|
12 |
+
|
13 |
+
# Define YOLO processing function
|
14 |
+
def process_image(image, model):
|
15 |
+
# Preprocess the image
|
16 |
+
preprocess = transforms.Compose([
|
17 |
+
transforms.Resize((416, 416)),
|
18 |
+
transforms.ToTensor(),
|
19 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
20 |
+
])
|
21 |
+
input_tensor = preprocess(image)
|
22 |
+
input_batch = input_tensor.unsqueeze(0)
|
23 |
+
|
24 |
+
# Perform inference
|
25 |
+
with torch.no_grad():
|
26 |
+
output = model(input_batch)
|
27 |
+
|
28 |
+
# Post-process the output (e.g., draw bounding boxes)
|
29 |
+
# Replace this with your post-processing code
|
30 |
+
|
31 |
+
# Convert tensor to PIL Image
|
32 |
+
output_image = transforms.ToPILImage()(output[0].cpu().squeeze())
|
33 |
+
|
34 |
+
return output_image
|
35 |
+
|
36 |
+
# Main Streamlit code
|
37 |
+
def main():
|
38 |
+
st.title('YOLO Image Detection')
|
39 |
+
|
40 |
+
# Upload image file
|
41 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
42 |
+
|
43 |
+
if uploaded_file is not None:
|
44 |
+
# Load YOLO model
|
45 |
+
model = load_model()
|
46 |
+
|
47 |
+
# Process uploaded image
|
48 |
+
image = Image.open(uploaded_file)
|
49 |
+
st.image(image, caption='Original Image', use_column_width=True)
|
50 |
+
|
51 |
+
output_image = process_image(image, model)
|
52 |
+
st.image(output_image, caption='Processed Image', use_column_width=True)
|
53 |
+
|
54 |
+
if __name__ == '__main__':
|
55 |
+
main()
|