import tensorflow as tf from keras import backend as K import numpy as np import scipy import os import cv2 as cv def bright_mae(y_true, y_pred): return K.mean(K.abs(y_pred[:,:,:,:3] - y_true[:,:,:,:3])) def bright_mse(y_true, y_pred): return K.mean((y_pred[:,:,:,:3] - y_true[:,:,:,:3])**2) def bright_AB(y_true, y_pred): return K.abs(K.mean(y_true[:,:,:,:3])-K.mean(y_pred[:,:,:,:3])) def log10(x): numerator = K.log(x) denominator = K.log(K.constant(10, dtype=numerator.dtype)) return numerator / denominator def bright_psnr(y_true, y_pred): mse = K.mean((K.abs(y_pred[:,:,:,:3] - y_true[:,:,:,:3])) ** 2) max_num = 1.0 psnr = 10 * log10(max_num ** 2 / mse) return psnr def _tf_fspecial_gauss(size, sigma): """Function to mimic the 'fspecial' gaussian MATLAB function """ x_data, y_data = np.mgrid[-size//2 + 1:size//2 + 1, -size//2 + 1:size//2 + 1] x_data = np.expand_dims(x_data, axis=-1) x_data = np.expand_dims(x_data, axis=-1) y_data = np.expand_dims(y_data, axis=-1) y_data = np.expand_dims(y_data, axis=-1) x = tf.constant(x_data, dtype=tf.float32) y = tf.constant(y_data, dtype=tf.float32) g = tf.exp(-((x**2 + y**2)/(2.0*sigma**2))) return g / tf.reduce_sum(g) def tf_ssim(img1, img2, cs_map=False, mean_metric=True, size=11, sigma=1.5): window = _tf_fspecial_gauss(size, sigma) # window shape [size, size] K1 = 0.01 K2 = 0.03 L = 1 # depth of image (255 in case the image has a differnt scale) C1 = (K1*L)**2 C2 = (K2*L)**2 mu1 = tf.nn.conv2d(img1, window, strides=[1,1,1,1], padding='VALID') mu2 = tf.nn.conv2d(img2, window, strides=[1,1,1,1],padding='VALID') mu1_sq = mu1*mu1 mu2_sq = mu2*mu2 mu1_mu2 = mu1*mu2 sigma1_sq = tf.nn.conv2d(img1*img1, window, strides=[1,1,1,1],padding='VALID') - mu1_sq sigma2_sq = tf.nn.conv2d(img2*img2, window, strides=[1,1,1,1],padding='VALID') - mu2_sq sigma12 = tf.nn.conv2d(img1*img2, window, strides=[1,1,1,1],padding='VALID') - mu1_mu2 if cs_map: value = (((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)* (sigma1_sq + sigma2_sq + C2)), (2.0*sigma12 + C2)/(sigma1_sq + sigma2_sq + C2)) else: value = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)* (sigma1_sq + sigma2_sq + C2)) if mean_metric: value = tf.reduce_mean(value) return value def tf_ms_ssim(img1, img2, mean_metric=True, level=5): weight = tf.constant([0.0448, 0.2856, 0.3001, 0.2363, 0.1333], dtype=tf.float32) mssim = [] mcs = [] for l in range(level): ssim_map, cs_map = tf_ssim(img1, img2, cs_map=True, mean_metric=False) mssim.append(tf.reduce_mean(ssim_map)) mcs.append(tf.reduce_mean(cs_map)) filtered_im1 = tf.nn.avg_pool(img1, [1,2,2,1], [1,2,2,1], padding='SAME') filtered_im2 = tf.nn.avg_pool(img2, [1,2,2,1], [1,2,2,1], padding='SAME') img1 = filtered_im1 img2 = filtered_im2 # list to tensor of dim D+1 mssim = tf.stack(mssim, axis=0) mcs = tf.stack(mcs, axis=0) value = (tf.reduce_prod(mcs[0:level-1]**weight[0:level-1])* (mssim[level-1]**weight[level-1])) if mean_metric: value = tf.reduce_mean(value) return value def bright_SSIM(y_true, y_pred): SSIM_loss = tf_ssim(tf.expand_dims(y_pred[:,:,:,0], -1), tf.expand_dims(y_true[:,:,:,0], -1))+tf_ssim(tf.expand_dims(y_pred[:,:,:,1], -1), tf.expand_dims(y_true[:,:,:,1], -1)) + tf_ssim(tf.expand_dims(y_pred[:,:,:,2], -1), tf.expand_dims(y_true[:,:,:,2], -1)) return SSIM_loss/3 def psnr_cau(y_true, y_pred): mse = np.mean((np.abs(y_pred - y_true)) ** 2) max_num = 1.0 psnr = 10 * np.log10(max_num ** 2 / mse) return psnr def save_model(model, name, epoch, batch_i): modelname = './Res_models/' + str(epoch) + '_' + str(batch_i) + name + '.h5' model.save_weights(modelname) def imread_color(path): img = cv.imread(path, cv.IMREAD_COLOR | cv.IMREAD_ANYDEPTH) / 255. b, g, r = cv.split(img) img_rgb = cv.merge([r, g, b]) return img_rgb # return scipy.misc.imread(path, mode='RGB').astype(np.float) / 255. def imwrite(path, img): r, g, b = cv.split(img*255) img_rgb = cv.merge([b, g, r]) cv.imwrite(path, img_rgb) # scipy.misc.toimage(img * 255, high=255, low=0, cmin=0, cmax=255).save(path) def range_scale(x): return x * 2 - 1.