import cv2 from time import time from alpr import * import torch import cv2 import numpy as np import tensorflow.compat.v1 as tf import os import streamlit as st from PIL import Image import streamlit as st def load_image(image_file): img = Image.open(image_file) return img st.subheader("Image") image_file = st.file_uploader("Upload Images", type=["png","jpg","jpeg"]) #if image_file is not None: # To See details #file_details = {"filename":image_file.name, "filetype":image_file.type,"filesize":image_file.size} #st.write(file_details) # To View Uploaded Image #st.image(load_image(image_file),width=250) submit = st.button('Generate') if submit: image = load_image(image_file) model = torch.hub.load('ultralytics/yolov5', 'custom', path='yoloocr_best.pt') model.cpu() model.conf = 0.5 license = DetectLicensePlate() counter = dict() frame = np.array(image)[...,::-1] try: plate_img = alpr(frame,license) results = model(plate_img*255) control = max(results.pandas().xyxy[0].sort_values('ymin').iloc[:,1].values) if control > 50: name = results.pandas().xyxy[0].sort_values('ymin') #.iloc[:, -1] #ymin alwas bigger than 50 with bottom characters ind = [ix for ix,i in enumerate(name.iloc[:,1]) if i>50][0] upper_f_2 = name.iloc[:ind].sort_values("xmin").iloc[:,-1][:2] upper_sort = name.iloc[:ind].sort_values("xmin").iloc[:,-1][2:] #add name column bottom_sort = name.iloc[ind:].sort_values("xmin").iloc[:,-1] upper_name = "".join([i for i in upper_sort]) upper_f_name = "".join([i for i in upper_f_2]) bottom_name = "".join([i for i in bottom_sort]) if "1" in upper_name: upper_name= upper_name.replace("1","I") if "6" in upper_name: upper_name= upper_name.replace("6","G") if "0" in upper_name: upper_name= upper_name.replace("0","O") name = upper_f_name + upper_name + bottom_name if name not in counter and name != '': counter[name] = 1 if name in counter and name != '': counter[name] += 1 plate_name = list((sorted(counter.items(), key=lambda item: item[1])))[-1][0] st.write(plate_name) else: #Post-processing pre-requisite decoder = results.pandas().xyxy[0].sort_values('xmin').iloc[:,0].values compare = list(decoder[2:]) maks = None for i in range(len(compare)): if i == len(compare) - 1: break if maks == None: maks = abs(compare[i] - compare[i + 1]) if abs(compare[i] - compare[i + 1]) > maks: maks = abs(compare[i] - compare[i + 1]) w_index = (maks, i + 1) name = results.pandas().xyxy[0].sort_values('xmin').iloc[:, -1] name = "".join([i for i in name]) if name not in counter and name != '': counter[name] = 1 if name in counter and name !='': counter[name] +=1 plate_name = list((sorted(counter.items(),key = lambda item:item[1])))[-1][0] #Post-processing happens after here mid_chars = str(plate_name[2:int(w_index[1] + 2)]) # assign this as old mid chars if "6" in mid_chars: mid_chars = mid_chars.replace("6", "G") # assign this as new if "1" in mid_chars: mid_chars = mid_chars.replace("1", "I") if "0" in mid_chars: mid_chars = mid_chars.replace("0", "O") new_plate_name = plate_name.replace(plate_name[2:int(w_index[1] + 2)], mid_chars) #cv2.imshow("Plate", plate_img) st.write(new_plate_name) except Exception as e: counter.clear() st.write("Plaka Bulunamadı")