Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from sentence_transformers import SentenceTransformer
|
3 |
+
|
4 |
+
# Load model
|
5 |
+
@st.cache_resource
|
6 |
+
def load_model():
|
7 |
+
return SentenceTransformer("BAAI/bge-small-en")
|
8 |
+
|
9 |
+
model = load_model()
|
10 |
+
|
11 |
+
# UI
|
12 |
+
st.title("Text Embedder (BAAI/bge-small-en)")
|
13 |
+
st.markdown("Enter some text and get the embedding vector.")
|
14 |
+
|
15 |
+
# Input
|
16 |
+
user_input = st.text_area("Text to Embed", height=150)
|
17 |
+
|
18 |
+
if st.button("Generate Embedding"):
|
19 |
+
if user_input.strip():
|
20 |
+
with st.spinner("Embedding..."):
|
21 |
+
embedding = model.encode([user_input])[0]
|
22 |
+
st.success("Embedding generated!")
|
23 |
+
st.json(embedding.tolist())
|
24 |
+
else:
|
25 |
+
st.warning("Please enter some text.")
|