import torch from peft import PeftModel import transformers import gradio as gr assert ( "LlamaTokenizer" in transformers._import_structure["models.llama"] ), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git" from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf") BASE_MODEL = "TheBloke/vicuna-7B-1.1-HF" LORA_WEIGHTS = "RinInori/vicuna_finetuned_6_sentiments" #Fine-tuned Alpaca model for sentiment analysis if torch.cuda.is_available(): device = "cuda" else: device = "cpu" try: if torch.backends.mps.is_available(): device = "mps" except: pass if device == "cuda": model = LlamaForCausalLM.from_pretrained( BASE_MODEL, load_in_8bit=False, torch_dtype=torch.float16, device_map="auto", ) model = PeftModel.from_pretrained( model, LORA_WEIGHTS, torch_dtype=torch.float16, force_download=True ) elif device == "mps": model = LlamaForCausalLM.from_pretrained( BASE_MODEL, device_map={"": device}, torch_dtype=torch.float16, ) model = PeftModel.from_pretrained( model, LORA_WEIGHTS, device_map={"": device}, torch_dtype=torch.float16, ) else: model = LlamaForCausalLM.from_pretrained( BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True ) model = PeftModel.from_pretrained( model, LORA_WEIGHTS, device_map={"": device}, ) def generate_prompt(instruction, input=None): if input: return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Input: {input} ### Response:""" else: return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction : {instruction} ### Response :""" if device != "cpu": model.half() model.eval() if torch.__version__ >= "2": model = torch.compile(model) def evaluate( instruction, input=None, temperature=0.1, top_p=0.75, top_k=40, num_beams=4, max_new_tokens=128, **kwargs, ): prompt = generate_prompt(instruction, input) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to(device) generation_config = GenerationConfig( temperature=temperature, top_p=top_p, top_k=top_k, num_beams=num_beams, **kwargs, ) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=max_new_tokens, ) s = generation_output.sequences[0] output = tokenizer.decode(s) return output.split("### Response:")[1].strip() g = gr.Interface( fn=evaluate, inputs=[ gr.components.Textbox( lines=2, label="Instruction", placeholder="Classify the text as one of these six different emotions: anger, fear, joy, love, sadness, or surprise.Response in lower-case and one word only." ), gr.components.Textbox(lines=2, label="Input", placeholder="I am crying"), gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"), gr.components.Slider(minimum=0, maximum=1, value=0.7, label="Top p"), gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"), gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"), gr.components.Slider( minimum=1, maximum=256, step=1, value=64, label="Max tokens" ), ], outputs=[ gr.inputs.Textbox( lines=5, label="Output", ) ], title="Fine-tuned version of Vicuna Model", description="This model is a fine-tuned version of the Vicuna model for sentiment analysis. https://github.com/hennypurwadi/Vicuna_finetune_sentiment_analysis \ Base model is https://huggingface.co/TheBloke/vicuna-7B-1.1-HF \ It is fine-tuned and trained on a dataset to Classify the text as one of these six different emotions: anger, fear, joy, love, sadness, or surprise.Response in lower-case and one word only. \ The model was trained and tested on a labeled dataset from Kaggle (https://www.kaggle.com/datasets/praveengovi/emotions-dataset-for-nlp)", ) g.queue(concurrency_count=1) g.launch()