import torch from peft import PeftModel import transformers import gradio as gr assert ( "LlamaTokenizer" in transformers._import_structure["models.llama"] ), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git" from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf") BASE_MODEL = "TheBloke/vicuna-7B-1.1-HF" LORA_WEIGHTS = "RinInori/vicuna_finetuned_6_sentiments" #Fine-tuned Alpaca model for sentiment analysis if torch.cuda.is_available(): device = "cuda" else: device = "cpu" try: if torch.backends.mps.is_available(): device = "mps" except: pass if device == "cuda": model = LlamaForCausalLM.from_pretrained( BASE_MODEL, load_in_8bit=False, torch_dtype=torch.float16, device_map="auto", ) model = PeftModel.from_pretrained( model, LORA_WEIGHTS, torch_dtype=torch.float16, force_download=True ) elif device == "mps": model = LlamaForCausalLM.from_pretrained( BASE_MODEL, device_map={"": device}, torch_dtype=torch.float16, ) model = PeftModel.from_pretrained( model, LORA_WEIGHTS, device_map={"": device}, torch_dtype=torch.float16, ) else: model = LlamaForCausalLM.from_pretrained( BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True ) model = PeftModel.from_pretrained( model, LORA_WEIGHTS, device_map={"": device}, ) if device != "cpu": model.half() model.eval() if torch.__version__ >= "2": model = torch.compile(model) def evaluate( input_text, temperature=0.1, top_p=0.75, top_k=40, num_beams=4, max_new_tokens=128, **kwargs, ): prompt = input_text inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to(device) generation_config = GenerationConfig( temperature=temperature, top_p=top_p, top_k=top_k, num_beams=num_beams, **kwargs, ) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=max_new_tokens, ) s = generation_output.sequences[0] output = tokenizer.decode(s) return output.strip() g = gr.Interface( fn=evaluate, inputs=gr.inputs.Textbox(label="Input", placeholder="Type your input here..."), outputs=gr.outputs.Textbox(label="Output"), title="ChatBot and Text Generation", description="This model is a fine-tuned version of the Vicuna model. \ BASE MODEL is 'TheBloke/vicuna-7B-1.1-HF', and LORA_WEIGHTS = 'RinInori/vicuna_finetuned_6_sentiments' ", theme="default", ) if __name__ == "__main__": g.launch()