from . import * class DW_Decoder(nn.Module): def __init__(self, message_length, blocks=2, channels=64, attention=None): super(DW_Decoder, self).__init__() self.conv1 = ConvBlock(3, 16, blocks=blocks) self.down1 = Down(16, 32, blocks=blocks) self.down2 = Down(32, 64, blocks=blocks) self.down3 = Down(64, 128, blocks=blocks) self.down4 = Down(128, 256, blocks=blocks) self.up3 = UP(256, 128) self.att3 = ResBlock(128 * 2, 128, blocks=blocks, attention=attention) self.up2 = UP(128, 64) self.att2 = ResBlock(64 * 2, 64, blocks=blocks, attention=attention) self.up1 = UP(64, 32) self.att1 = ResBlock(32 * 2, 32, blocks=blocks, attention=attention) self.up0 = UP(32, 16) self.att0 = ResBlock(16 * 2, 16, blocks=blocks, attention=attention) self.Conv_1x1 = nn.Conv2d(16, 1, kernel_size=1, stride=1, padding=0, bias=False) self.message_layer = nn.Linear(message_length * message_length, message_length) self.message_length = message_length def forward(self, x): d0 = self.conv1(x) d1 = self.down1(d0) d2 = self.down2(d1) d3 = self.down3(d2) d4 = self.down4(d3) u3 = self.up3(d4) u3 = torch.cat((d3, u3), dim=1) u3 = self.att3(u3) u2 = self.up2(u3) u2 = torch.cat((d2, u2), dim=1) u2 = self.att2(u2) u1 = self.up1(u2) u1 = torch.cat((d1, u1), dim=1) u1 = self.att1(u1) u0 = self.up0(u1) u0 = torch.cat((d0, u0), dim=1) u0 = self.att0(u0) residual = self.Conv_1x1(u0) message = F.interpolate(residual, size=(self.message_length, self.message_length), mode='nearest') message = message.view(message.shape[0], -1) message = self.message_layer(message) return message class Down(nn.Module): def __init__(self, in_channels, out_channels, blocks): super(Down, self).__init__() self.layer = torch.nn.Sequential( ConvBlock(in_channels, in_channels, stride=2), ConvBlock(in_channels, out_channels, blocks=blocks) ) def forward(self, x): return self.layer(x) class UP(nn.Module): def __init__(self, in_channels, out_channels): super(UP, self).__init__() self.conv = ConvBlock(in_channels, out_channels) def forward(self, x): x = F.interpolate(x, scale_factor=2, mode='nearest') return self.conv(x)