#### general settings name: train_ibsn_bit_64 use_tb_logger: true model: MIMO-VRN-h distortion: sr scale: 4 gpu_ids: [0, 1] gop: 1 num_image: 1 addnoise: False noisesigma: 0.05 addjpeg: False jpegfactor: 90 addpossion: False sdinpaint: False controlnetinpaint: False sdxl: False repaint: False sdprompt: False sdxlprompt: False faceswap: False hide: True bithide: True degrade_shuffle: True prompt: True prompt_len: 3 message_length: 64 losstype: mse mode: bit #### datasets datasets: train: name: Vimeo90K mode: train interval_list: [1] random_reverse: false border_mode: false data_path: /userhome/train2017 txt_path: /userhome/train2017.txt dataroot_LQ: ~/vimeo90k/vimeo90k_train_LR7frames.lmdb cache_keys: Vimeo90K_train_keys.pkl num_image: 1 N_frames: 7 use_shuffle: true n_workers: 24 batch_size: 4 GT_size: 400 LQ_size: 36 use_flip: true use_rot: true color: RGB val: num_image: 1 name: Vid4 mode: test data_path: ../dataset/valAGE-Set txt_path: ../dataset/sep_vallist.txt N_frames: 1 padding: 'new_info' pred_interval: -1 #### network structures network_G: which_model_G: subnet_type: DBNet in_nc: 12 out_nc: 12 block_num: [6, 6] scale: 2 init: xavier_group block_num_rbm: 8 block_num_trans: 4 #### path path: pretrain_model_G: models: ckp/base strict_load: true resume_state: ~ #### training settings: learning rate scheme, loss train: lr_G: !!float 1e-4 beta1: 0.9 beta2: 0.5 niter: 250000 warmup_iter: -1 # no warm up lr_scheme: MultiStepLR lr_steps: [30000, 100000, 250000] lr_gamma: 0.5 pixel_criterion_forw: l2 pixel_criterion_back: l1 manual_seed: 10 val_freq: !!float 500 #!!float 5e3 lambda_fit_forw: 1. lambda_rec_back: 1 lambda_center: 0 lambda_msg: !!float 100 # 500000 progressive: False weight_decay_G: !!float 1e-12 gradient_clipping: 10 #### logger logger: print_freq: 100 save_checkpoint_freq: !!float 500