from PIL import Image import requests import torch from torchvision import transforms from torchvision.transforms.functional import InterpolationMode device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') import gradio as gr from models.blip import blip_decoder image_size = 384 transform = transforms.Compose([ transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) ]) model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_caption.pth' model = blip_decoder(pretrained=model_url, image_size=384, vit='large') model.eval() model = model.to(device) from models.blip_vqa import blip_vqa image_size_vq = 480 transform_vq = transforms.Compose([ transforms.Resize((image_size_vq,image_size_vq),interpolation=InterpolationMode.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) ]) model_url_vq = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_vqa.pth' model_vq = blip_vqa(pretrained=model_url_vq, image_size=480, vit='base') model_vq.eval() model_vq = model_vq.to(device) def inference(raw_image, model_n, question, strategy): if model_n == 'Image Captioning': image = transform(raw_image).unsqueeze(0).to(device) with torch.no_grad(): if strategy == "Beam search": caption = model.generate(image, sample=False, num_beams=3, max_length=20, min_length=5) else: caption = model.generate(image, sample=True, top_p=0.9, max_length=20, min_length=5) return 'caption: '+caption[0] else: image_vq = transform_vq(raw_image).unsqueeze(0).to(device) with torch.no_grad(): answer = model_vq(image_vq, question, train=False, inference='generate') return 'answer: '+answer[0] inputs = [ gr.Image(type='pil', interactive=True), gr.inputs.Radio(choices=['Image Captioning',"Visual Question Answering"], type="value", default="Image Captioning", label="Task" ),gr.inputs.Textbox(lines=2, label="Question"),gr.inputs.Radio(choices=['Beam search','Nucleus sampling'], type="value", default="Nucleus sampling", label="Caption Decoding Strategy")] outputs = gr.outputs.Textbox(label="Output") title = "BLIP" description = "Gradio demo for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation (Salesforce Research). We have now disable image uploading as of March 23. 2023. Click one of the examples to load them. Read more at the links below." article = """
BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation | Github Repo
""" gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=[['starrynight.jpeg',"Image Captioning","None","Nucleus sampling"]]).launch(enable_queue=True)