import gradio as gr import onnxruntime as rt from transformers import AutoTokenizer import torch, json tokenizer = AutoTokenizer.from_pretrained("distilroberta-base") with open("genre_types_encoded_multi_class.json", "r") as fp: encode_genre_types = json.load(fp) genres = list(encode_genre_types.keys()) inf_session = rt.InferenceSession('film_genre_classifier_quantized.onnx') input_name = inf_session.get_inputs()[0].name output_name = inf_session.get_outputs()[0].name def classify_film_genre(description): input_ids = tokenizer(description)['input_ids'][:512] logits = inf_session.run([output_name], {input_name: [input_ids]})[0] logits = torch.FloatTensor(logits) probs = torch.sigmoid(logits)[0] return dict(zip(genres, map(float, probs))) label = gr.Label(num_top_classes=5) iface = gr.Interface(fn=classify_film_genre, inputs="text", outputs=label, title="Film Genre Classifer", description=( f""" Instructions: 1. Copy and paste a movie plot from the internet. 2. Hit the Submit button. Note: There are a total of 27 Genres to classify """ ) ) iface.launch(inline=False)