from ultralytics import YOLO import torch import cv2 import numpy as np import gradio as gr from PIL import Image # Load YOLOv8 model device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = YOLO(f"yolo_model.pt").to(device) model.to(device) model.eval() # Load COCO class labels CLASS_NAMES = model.names # YOLO's built-in class names def preprocess_image(image): image = Image.fromarray(image) image = image.convert("RGB") return image def detect_objects(image): image = preprocess_image(image) results = model.predict(image) # Run YOLO inference # Convert results to bounding box format image = np.array(image) for result in results: for box, cls, conf in zip(result.boxes.xyxy, result.boxes.cls, result.boxes.conf): x1, y1, x2, y2 = map(int, box[:4]) class_name = CLASS_NAMES[int(cls)] # Get class name confidence = conf.item() * 100 # Convert confidence to percentage # Draw a bolder bounding box cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 4) # Increased thickness # Larger text for class label label = f"{class_name} ({confidence:.1f}%)" cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 3, cv2.LINE_AA) # Larger text return image # Gradio UI with Submit button iface = gr.Interface( fn=detect_objects, inputs=gr.Image(type="numpy", label="Upload Image"), outputs=gr.Image(type="numpy", label="Detected Objects"), title="Vehicle, Pedestrians and Signboard detection", description=( f""" Use webcam or Upload an image to detect objects. Note: The model can detect 3 classes of objects (Vehicles, Pedestrians and Signboards). This model's API is also integrated to another [WebApp](https://yolov8-custom-training-object-detection-j3besa9ppegzcdzslzsk8t.streamlit.app/). """ ), allow_flagging="never" # Disables unwanted flags ) iface.launch()