Upload 2 files
Browse files- app.py +54 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ultralytics import YOLO
|
2 |
+
import torch
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
import gradio as gr
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
# Load YOLOv8 model
|
9 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
10 |
+
model = YOLO("yolov8x.pt") # Load a more powerful YOLOv8 model
|
11 |
+
model.to(device)
|
12 |
+
model.eval()
|
13 |
+
|
14 |
+
# Load COCO class labels
|
15 |
+
CLASS_NAMES = model.names # YOLO's built-in class names
|
16 |
+
|
17 |
+
def preprocess_image(image):
|
18 |
+
image = Image.fromarray(image)
|
19 |
+
image = image.convert("RGB")
|
20 |
+
return image
|
21 |
+
|
22 |
+
def detect_objects(image):
|
23 |
+
image = preprocess_image(image)
|
24 |
+
results = model.predict(image) # Run YOLO inference
|
25 |
+
|
26 |
+
# Convert results to bounding box format
|
27 |
+
image = np.array(image)
|
28 |
+
for result in results:
|
29 |
+
for box, cls, conf in zip(result.boxes.xyxy, result.boxes.cls, result.boxes.conf):
|
30 |
+
x1, y1, x2, y2 = map(int, box[:4])
|
31 |
+
class_name = CLASS_NAMES[int(cls)] # Get class name
|
32 |
+
confidence = conf.item() * 100 # Convert confidence to percentage
|
33 |
+
|
34 |
+
# Draw a bolder bounding box
|
35 |
+
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 4) # Increased thickness
|
36 |
+
|
37 |
+
# Larger text for class label
|
38 |
+
label = f"{class_name} ({confidence:.1f}%)"
|
39 |
+
cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX,
|
40 |
+
1, (0, 255, 0), 3, cv2.LINE_AA) # Larger text
|
41 |
+
|
42 |
+
return image
|
43 |
+
|
44 |
+
# Gradio UI with Submit button
|
45 |
+
iface = gr.Interface(
|
46 |
+
fn=detect_objects,
|
47 |
+
inputs=gr.Image(type="numpy", label="Upload Image"),
|
48 |
+
outputs=gr.Image(type="numpy", label="Detected Objects"),
|
49 |
+
title="Object Detection",
|
50 |
+
description="Use webcam or Upload an image to detect objects.",
|
51 |
+
allow_flagging="never" # Disables unwanted flags
|
52 |
+
)
|
53 |
+
|
54 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ultralytics
|
2 |
+
torch
|
3 |
+
torchvision
|
4 |
+
opencv-python
|
5 |
+
pillow
|
6 |
+
gradio
|