Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -97,7 +97,8 @@ if (runModel=='1'):
|
|
97 |
test_dataset = IntentDataset(test_encodings, list(test_df['label']))
|
98 |
|
99 |
|
100 |
-
|
|
|
101 |
|
102 |
|
103 |
# Create an instance of the custom loss function
|
@@ -180,14 +181,14 @@ if (runModel=='1'):
|
|
180 |
|
181 |
else:
|
182 |
print('Load Pre-trained')
|
183 |
-
|
184 |
-
|
185 |
|
186 |
-
model_name = "Reyad-Ahmmed/hf-data-timeframe"
|
187 |
|
188 |
# RobertaTokenizer.from_pretrained(model_save_path)
|
189 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name, subfolder="data-timeframe_model").to('cpu')
|
190 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, subfolder="data-timeframe_tokenizer")
|
191 |
|
192 |
#Define the label mappings (this must match the mapping used during training)
|
193 |
label_mapping = {
|
|
|
97 |
test_dataset = IntentDataset(test_encodings, list(test_df['label']))
|
98 |
|
99 |
|
100 |
+
token = os.getenv("hf_token")
|
101 |
+
login(token=token)
|
102 |
|
103 |
|
104 |
# Create an instance of the custom loss function
|
|
|
181 |
|
182 |
else:
|
183 |
print('Load Pre-trained')
|
184 |
+
model_save_path = "./" + modelNameToUse + "_model"
|
185 |
+
tokenizer_save_path = "./" + modelNameToUse + "_tokenizer"
|
186 |
|
187 |
+
#model_name = "Reyad-Ahmmed/hf-data-timeframe"
|
188 |
|
189 |
# RobertaTokenizer.from_pretrained(model_save_path)
|
190 |
+
#model = AutoModelForSequenceClassification.from_pretrained(model_name, subfolder="data-timeframe_model").to('cpu')
|
191 |
+
#tokenizer = AutoTokenizer.from_pretrained(model_name, subfolder="data-timeframe_tokenizer")
|
192 |
|
193 |
#Define the label mappings (this must match the mapping used during training)
|
194 |
label_mapping = {
|