Renegadesoffun commited on
Commit
703ea1c
·
1 Parent(s): 8f0d2e8

Updated for CPU evalgguf2

Browse files
Files changed (1) hide show
  1. app.py +17 -25
app.py CHANGED
@@ -1,35 +1,27 @@
1
  import streamlit as st
2
- from ggulf import GGUFModel, GGUFTokenizer
3
- import torch
4
 
5
- model_name = "TheBloke/TinyLlama-1.1B-Chat-v0.3-GGUF"
6
 
7
  # Load model and tokenizer
8
- model = GGUFModel.from_pretrained(model_name)
9
- tokenizer = GGUFTokenizer.from_pretrained(model_name)
10
 
11
- # Set model to eval mode
12
- model.eval()
13
 
14
  st.title("Buddy Christ Chatbot")
15
 
16
  user_input = st.text_input("You:", "")
17
-
18
  if user_input:
19
-
20
- # Encode input
21
- inputs = tokenizer.encode(user_input, return_tensors="pt")
22
-
23
- # Generate response using GGUF
24
- response = model.generate(inputs,
25
- max_length=1000,
26
- temperature=1.0,
27
- top_k=10,
28
- pad_token_id=tokenizer.eos_token_id,
29
- gguf_mode=True)
30
-
31
- # Print and display full response
32
- print(response_text)
33
- response_text = tokenizer.decode(response[0])
34
-
35
- st.write("Buddy Christ:", response_text)
 
1
  import streamlit as st
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
 
3
 
4
+ model_name = "TheBloke/TinyLlama-1.1B-Chat-v0.3-GGUF"
5
 
6
  # Load model and tokenizer
7
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
8
+ model = AutoModelForCausalLM.from_pretrained(model_name)
9
 
10
+ # Set model to evaluation mode
11
+ model.eval()
12
 
13
  st.title("Buddy Christ Chatbot")
14
 
15
  user_input = st.text_input("You:", "")
 
16
  if user_input:
17
+ # Encode the user input
18
+ inputs = tokenizer.encode(user_input, return_tensors="pt", truncation=True, max_length=1000)
19
+
20
+ # Generate a response using the model
21
+ response = model.generate(inputs, max_length=1000, temperature=1.0, top_k=10, pad_token_id=tokenizer.eos_token_id, gguf_mode=True)
22
+
23
+ # Decode the response
24
+ response_text = tokenizer.decode(response[0], skip_special_tokens=True)
25
+
26
+ # Display the response in Streamlit
27
+ st.write("Buddy Christ:", response_text)