Upload final_code.py
Browse files- final_code.py +99 -0
final_code.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"# Load model directly\n",
|
10 |
+
"from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, TextClassificationPipeline\n",
|
11 |
+
"import torch\n",
|
12 |
+
"import gradio as gr\n",
|
13 |
+
"from openpyxl import load_workbook\n",
|
14 |
+
"from numpy import mean\n",
|
15 |
+
"\n",
|
16 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"suriya7/bart-finetuned-text-summarization\")\n",
|
17 |
+
"model = AutoModelForSeq2SeqLM.from_pretrained(\"suriya7/bart-finetuned-text-summarization\")\n",
|
18 |
+
"\n",
|
19 |
+
"tokenizer_keywords = AutoTokenizer.from_pretrained(\"transformer3/H2-keywordextractor\")\n",
|
20 |
+
"model_keywords = AutoModelForSeq2SeqLM.from_pretrained(\"transformer3/H2-keywordextractor\")\n",
|
21 |
+
"\n",
|
22 |
+
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
23 |
+
"# Load the fine-tuned model and tokenizer\n",
|
24 |
+
"new_model = AutoModelForSequenceClassification.from_pretrained('roberta-rating')\n",
|
25 |
+
"new_tokenizer = AutoTokenizer.from_pretrained('roberta-rating')\n",
|
26 |
+
"\n",
|
27 |
+
"\n",
|
28 |
+
"# Create a classification pipeline\n",
|
29 |
+
"classifier = TextClassificationPipeline(model=new_model, tokenizer=new_tokenizer, device=device)\n",
|
30 |
+
"\n",
|
31 |
+
"# Add label mapping for sentiment analysis\n",
|
32 |
+
"label_mapping = {1: '1/5', 2: '2/5', 3: '3/5', 4: '4/5', 5: '5/5'}\n",
|
33 |
+
"\n",
|
34 |
+
"def parse_xl(file_path):\n",
|
35 |
+
" cells = []\n",
|
36 |
+
"\n",
|
37 |
+
" workbook = load_workbook(filename=file_path)\n",
|
38 |
+
" for sheet in workbook.worksheets:\n",
|
39 |
+
" for row in sheet.iter_rows():\n",
|
40 |
+
" for cell in row:\n",
|
41 |
+
" if cell.value != None:\n",
|
42 |
+
" cells.append(cell.value)\n",
|
43 |
+
"\n",
|
44 |
+
" return cells\n",
|
45 |
+
"\n",
|
46 |
+
"def evaluate(file):\n",
|
47 |
+
" reviews = parse_xl(file)\n",
|
48 |
+
" ratings = []\n",
|
49 |
+
" text = \"\"\n",
|
50 |
+
"\n",
|
51 |
+
" for review in reviews:\n",
|
52 |
+
" ratings.append(int(classifier(review)[0]['label'].split('_')[1]))\n",
|
53 |
+
" text += review\n",
|
54 |
+
" text += \" \"\n",
|
55 |
+
" \n",
|
56 |
+
" inputs = tokenizer([text], max_length=1024, truncation=True, return_tensors=\"pt\")\n",
|
57 |
+
" summary_ids = model.generate(inputs[\"input_ids\"], num_beams=2, min_length=50, max_length=1000)\n",
|
58 |
+
" summary = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]\n",
|
59 |
+
"\n",
|
60 |
+
" inputs_keywords = tokenizer_keywords([text], max_length=1024, truncation=True, return_tensors=\"pt\")\n",
|
61 |
+
" summary_ids_keywords = model_keywords.generate(inputs_keywords[\"input_ids\"], num_beams=2, min_length=0, max_length=100)\n",
|
62 |
+
" keywords = tokenizer_keywords.batch_decode(summary_ids_keywords, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] \n",
|
63 |
+
"\n",
|
64 |
+
" return round(mean(ratings), 2), summary, keywords\n",
|
65 |
+
"\n",
|
66 |
+
"iface = gr.Interface(\n",
|
67 |
+
" fn=evaluate,\n",
|
68 |
+
" inputs=gr.File(label=\"Reviews\", file_types=[\".xlsx\", \".xlsm\", \".xltx\", \".xltm\"]),\n",
|
69 |
+
" outputs=[gr.Textbox(label=\"Rating\"), gr.Textbox(label=\"Summary\"), gr.Textbox(label=\"Keywords\")],\n",
|
70 |
+
" title='Summarize Reviews',\n",
|
71 |
+
" description=\"Evaluate and summarize collection of reviews. Reviews are submitted as an Excel file, where each reviews is in its own cell.\"\n",
|
72 |
+
")\n",
|
73 |
+
"\n",
|
74 |
+
"iface.launch(share=True)"
|
75 |
+
]
|
76 |
+
}
|
77 |
+
],
|
78 |
+
"metadata": {
|
79 |
+
"kernelspec": {
|
80 |
+
"display_name": "SolutionsInPR",
|
81 |
+
"language": "python",
|
82 |
+
"name": "python3"
|
83 |
+
},
|
84 |
+
"language_info": {
|
85 |
+
"codemirror_mode": {
|
86 |
+
"name": "ipython",
|
87 |
+
"version": 3
|
88 |
+
},
|
89 |
+
"file_extension": ".py",
|
90 |
+
"mimetype": "text/x-python",
|
91 |
+
"name": "python",
|
92 |
+
"nbconvert_exporter": "python",
|
93 |
+
"pygments_lexer": "ipython3",
|
94 |
+
"version": "3.12.3"
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"nbformat": 4,
|
98 |
+
"nbformat_minor": 2
|
99 |
+
}
|