Spaces:
Build error
Build error
| # import pandas as pd | |
| # from prophet import Prophet | |
| # import gradio as gr | |
| # import plotly.graph_objs as go | |
| # import numpy as np | |
| # import requests | |
| # # Function to train the model and generate forecast | |
| # def predict_sales(time_frame): | |
| # #login | |
| # url="https://livesystem.hisabkarlay.com/auth/login" | |
| # payload={ | |
| # 'username':'testuser', | |
| # 'password':'testuser', | |
| # 'client_secret':'3udPXhYSfCpktnls1C3TSzI96JLypqUGwJR05RHf', | |
| # 'client_id':'4', | |
| # 'grant_type':'password' | |
| # } | |
| # response=requests.post(url,data=payload) | |
| # print(response.text) | |
| # access_token=response.json()['access_token'] | |
| # print(access_token) | |
| # #fetch all sell data | |
| # per_page=-1 | |
| # url=f"https://livesystem.hisabkarlay.com/connector/api/sell?per_page={per_page}" | |
| # headers={ | |
| # 'Authorization':f'Bearer {access_token}' | |
| # } | |
| # response=requests.get(url,headers=headers) | |
| # data=response.json()['data'] | |
| # date=[] | |
| # amount=[] | |
| # for item in data: | |
| # date.append(item.get('transaction_date')) | |
| # amount.append(float(item.get('final_total'))) | |
| # data_dict={ | |
| # 'date':date, | |
| # 'amount':amount | |
| # } | |
| # data_frame=pd.DataFrame(data_dict) | |
| # # Convert 'date' column to datetime format | |
| # data_frame['date'] = pd.to_datetime(data_frame['date']) | |
| # # Extract only the date part | |
| # data_frame['date_only'] = data_frame['date'].dt.date | |
| # # Group by date and calculate total sales | |
| # daily_sales = data_frame.groupby('date_only').agg(total_sales=('amount', 'sum')).reset_index() | |
| # # Prepare the DataFrame for Prophet | |
| # df = pd.DataFrame({ | |
| # 'Date': daily_sales['date_only'], | |
| # 'Total paid': daily_sales['total_sales'] | |
| # }) | |
| # # Apply log transformation | |
| # df['y'] = np.log1p(df['Total paid']) # Using log1p to avoid log(0) | |
| # # Prepare Prophet model | |
| # model = Prophet(weekly_seasonality=True) # Enable weekly seasonality | |
| # df['ds'] = df['Date'] | |
| # model.fit(df[['ds', 'y']]) | |
| # # Future forecast based on the time frame | |
| # future_periods = { | |
| # 'Next Day': 1, | |
| # '7 days': 7, | |
| # '10 days': 10, | |
| # '15 days': 15, | |
| # '1 month': 30 | |
| # } | |
| # # Get the last historical date and calculate the start date for the forecast | |
| # last_date_value = df['Date'].iloc[-1] | |
| # forecast_start_date = pd.Timestamp(last_date_value) + pd.Timedelta(days=1) # Start the forecast from the next day | |
| # # Generate the future time DataFrame starting from the day after the last date | |
| # future_time = model.make_future_dataframe(periods=future_periods[time_frame], freq='D') | |
| # # Filter future_time to include only future dates starting from forecast_start_date | |
| # future_only = future_time[future_time['ds'] >= forecast_start_date] | |
| # forecast = model.predict(future_only) | |
| # # Exponentiate the forecast to revert back to the original scale | |
| # forecast['yhat'] = np.expm1(forecast['yhat']) # Use expm1 to handle the log transformation | |
| # forecast['yhat_lower'] = np.expm1(forecast['yhat_lower']) # Exponentiate lower bound | |
| # forecast['yhat_upper'] = np.expm1(forecast['yhat_upper']) # Exponentiate upper bound | |
| # # Create a DataFrame for weekends only | |
| # forecast['day_of_week'] = forecast['ds'].dt.day_name() # Get the day name from the date | |
| # weekends = forecast[forecast['day_of_week'].isin(['Saturday', 'Sunday'])] # Filter for weekends | |
| # # Display the forecasted data for the specified period | |
| # forecast_table = forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].head(future_periods[time_frame]) | |
| # weekend_forecast_table = weekends[['ds', 'yhat', 'yhat_lower', 'yhat_upper']] # Weekend forecast | |
| # # Create a Plotly graph | |
| # fig = go.Figure() | |
| # fig.add_trace(go.Scatter( | |
| # x=forecast['ds'], y=forecast['yhat'], | |
| # mode='lines+markers', | |
| # name='Forecasted Sales', | |
| # line=dict(color='orange'), | |
| # marker=dict(size=6), | |
| # hovertemplate='Date: %{x}<br>Forecasted Sales: %{y}<extra></extra>' | |
| # )) | |
| # # Add lines for yhat_lower and yhat_upper | |
| # fig.add_trace(go.Scatter( | |
| # x=forecast['ds'], y=forecast['yhat_lower'], | |
| # mode='lines', | |
| # name='Lower Bound', | |
| # line=dict(color='red', dash='dash') | |
| # )) | |
| # fig.add_trace(go.Scatter( | |
| # x=forecast['ds'], y=forecast['yhat_upper'], | |
| # mode='lines', | |
| # name='Upper Bound', | |
| # line=dict(color='green', dash='dash') | |
| # )) | |
| # fig.update_layout( | |
| # title='Sales Forecast using Prophet', | |
| # xaxis_title='Date', | |
| # yaxis_title='Sales Price', | |
| # xaxis=dict(tickformat="%Y-%m-%d"), | |
| # yaxis=dict(autorange=True) | |
| # ) | |
| # return forecast_table, weekend_forecast_table, fig # Return the forecast table, weekend forecast, and plot | |
| # # Gradio interface | |
| # def run_gradio(): | |
| # # Create the Gradio Interface | |
| # time_options = ['Next Day', '7 days', '10 days', '15 days', '1 month'] | |
| # gr.Interface( | |
| # fn=predict_sales, # Function to be called | |
| # inputs=gr.components.Dropdown(time_options, label="Select Forecast Time Range"), # User input | |
| # outputs=[ | |
| # gr.components.Dataframe(label="Forecasted Sales Table"), # Forecasted data in tabular form | |
| # gr.components.Dataframe(label="Weekend Forecasted Sales Table"), # Weekend forecast data | |
| # gr.components.Plot(label="Sales Forecast Plot",min_width=500,scale=2) # Plotly graph output | |
| # ], | |
| # title="Sales Forecasting with Prophet", | |
| # description="Select a time range for the forecast and click on the button to train the model and see the results." | |
| # ).launch(debug=True) | |
| # # Run the Gradio interface | |
| # if __name__ == '__main__': | |
| # run_gradio() | |
| import pandas as pd | |
| from prophet import Prophet | |
| import gradio as gr | |
| import plotly.graph_objs as go | |
| import numpy as np | |
| # Function to train the model and generate forecast | |
| def predict_sales(time_frame): | |
| all_sales_data = pd.read_csv('All sales - House of Pizza.csv') | |
| # Clean up the 'Total paid' column by splitting based on '₨' symbol and converting to float | |
| def clean_total_paid(val): | |
| if isinstance(val, str): # Only process if the value is a string | |
| amounts = [float(x.replace(',', '').strip()) for x in val.split('₨') if x.strip()] | |
| return sum(amounts) # Sum if multiple values exist | |
| elif pd.isna(val): # Handle NaN values | |
| return 0.0 | |
| return val # If it's already a float, return it as-is | |
| # Apply the cleaning function to the 'Total paid' column | |
| all_sales_data['Total paid'] = all_sales_data['Total paid'].apply(clean_total_paid) | |
| # Convert the 'Date' column to datetime, coercing errors | |
| all_sales_data['Date'] = pd.to_datetime(all_sales_data['Date'], format='%m/%d/%Y %H:%M', errors='coerce') | |
| # Drop rows with invalid dates | |
| all_sales_data = all_sales_data.dropna(subset=['Date']) | |
| all_sales_data['date_only'] = all_sales_data['Date'].dt.date | |
| daily_sales = all_sales_data.groupby('date_only').agg(total_sales=('Total paid', 'sum')).reset_index() | |
| # Prepare the DataFrame for Prophet | |
| df = pd.DataFrame({ | |
| 'Date': daily_sales['date_only'], | |
| 'Total paid': daily_sales['total_sales'] | |
| }) | |
| # Apply log transformation | |
| df['y'] = np.log1p(df['Total paid']) # Using log1p to avoid log(0) | |
| # Prepare Prophet model | |
| model = Prophet(weekly_seasonality=True) # Enable weekly seasonality | |
| df['ds'] = df['Date'] | |
| model.fit(df[['ds', 'y']]) | |
| # Future forecast based on the time frame | |
| future_periods = { | |
| 'Next Day': 1, | |
| '7 days': 7, | |
| '10 days': 10, | |
| '15 days': 15, | |
| '1 month': 30 | |
| } | |
| # Get the last historical date and calculate the start date for the forecast | |
| last_date_value = df['Date'].iloc[-1] | |
| forecast_start_date = pd.Timestamp(last_date_value) + pd.Timedelta(days=1) # Start the forecast from the next day | |
| # Generate the future time DataFrame starting from the day after the last date | |
| future_time = model.make_future_dataframe(periods=future_periods[time_frame], freq='D') | |
| # Filter future_time to include only future dates starting from forecast_start_date | |
| future_only = future_time[future_time['ds'] >= forecast_start_date] | |
| forecast = model.predict(future_only) | |
| # Exponentiate the forecast to revert back to the original scale | |
| forecast['yhat'] = np.expm1(forecast['yhat']) # Use expm1 to handle the log transformation | |
| forecast['yhat_lower'] = np.expm1(forecast['yhat_lower']) # Exponentiate lower bound | |
| forecast['yhat_upper'] = np.expm1(forecast['yhat_upper']) # Exponentiate upper bound | |
| # Create a DataFrame for weekends only | |
| forecast['day_of_week'] = forecast['ds'].dt.day_name() # Get the day name from the date | |
| weekends = forecast[forecast['day_of_week'].isin(['Saturday', 'Sunday'])] # Filter for weekends | |
| # Display the forecasted data for the specified period | |
| forecast_table = forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].head(future_periods[time_frame]) | |
| weekend_forecast_table = weekends[['ds', 'yhat', 'yhat_lower', 'yhat_upper']] # Weekend forecast | |
| # Create a Plotly graph | |
| fig = go.Figure() | |
| fig.add_trace(go.Scatter( | |
| x=forecast['ds'], y=forecast['yhat'], | |
| mode='lines+markers', | |
| name='Forecasted Sales', | |
| line=dict(color='orange'), | |
| marker=dict(size=6), | |
| hovertemplate='Date: %{x}<br>Forecasted Sales: %{y}<extra></extra>' | |
| )) | |
| # Add lines for yhat_lower and yhat_upper | |
| fig.add_trace(go.Scatter( | |
| x=forecast['ds'], y=forecast['yhat_lower'], | |
| mode='lines', | |
| name='Lower Bound', | |
| line=dict(color='red', dash='dash') | |
| )) | |
| fig.add_trace(go.Scatter( | |
| x=forecast['ds'], y=forecast['yhat_upper'], | |
| mode='lines', | |
| name='Upper Bound', | |
| line=dict(color='green', dash='dash') | |
| )) | |
| fig.update_layout( | |
| title='Sales Forecast using Prophet', | |
| xaxis_title='Date', | |
| yaxis_title='Sales Price', | |
| xaxis=dict(tickformat="%Y-%m-%d"), | |
| yaxis=dict(autorange=True) | |
| ) | |
| return forecast_table, weekend_forecast_table, fig # Return the forecast table, weekend forecast, and plot | |
| # Gradio interface | |
| def run_gradio(): | |
| # Create the Gradio Interface | |
| time_options = ['Next Day', '7 days', '10 days', '15 days', '1 month'] | |
| gr.Interface( | |
| fn=predict_sales, # Function to be called | |
| inputs=gr.components.Dropdown(time_options, label="Select Forecast Time Range"), # User input | |
| outputs=[ | |
| gr.components.Dataframe(label="Forecasted Sales Table"), # Forecasted data in tabular form | |
| gr.components.Dataframe(label="Weekend Forecasted Sales Table"), # Weekend forecast data | |
| gr.components.Plot(label="Sales Forecast Plot") # Plotly graph output | |
| ], | |
| title="Sales Forecasting with Prophet", | |
| description="Select a time range for the forecast and click on the button to train the model and see the results." | |
| ).launch(debug=True) | |
| # Run the Gradio interface | |
| if __name__ == '__main__': | |
| run_gradio() | |