RawadAlghamdi commited on
Commit
75814ec
·
verified ·
1 Parent(s): 94f66a5

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -0
app.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import pipeline
3
+
4
+ # Load the sentiment analysis pipeline with the specified model
5
+ sentiment_analyzer = pipeline("sentiment-analysis", model="nlptown/bert-base-multilingual-uncased-sentiment")
6
+
7
+ # Define the sentiment analysis function
8
+ def analyze_sentiment(text):
9
+ # Perform sentiment analysis
10
+ result = sentiment_analyzer(text)[0]
11
+ # Extract label (e.g., "1 star", "2 stars", etc.) and return it
12
+ return f"Predicted Sentiment: {result['label']}"
13
+
14
+ # Define input and output components with clear labels
15
+ input_text = gr.Textbox(lines=5, label="Enter Your Text", placeholder="Type a sentence or paragraph here...")
16
+ output_sentiment = gr.Textbox(label="Sentiment Result")
17
+
18
+ # Define example inputs
19
+ examples = [
20
+ "I love this product! It's amazing!",
21
+ "This was the worst experience I've ever had.",
22
+ "The movie was okay, not great but not bad either.",
23
+ "Absolutely fantastic! I would recommend it to everyone."
24
+ ]
25
+
26
+ # Create the Gradio interface
27
+ interface = gr.Interface(
28
+ fn=analyze_sentiment,
29
+ inputs=input_text,
30
+ outputs=output_sentiment,
31
+ title="Sentiment Analyzer",
32
+ description="Enter text to analyze its sentiment (1 to 5 stars) using a BERT-based model.",
33
+ examples=examples,
34
+ theme="default" # Ensures a clean, responsive design
35
+ )
36
+
37
+ # Launch the interface
38
+ interface.launch()