File size: 10,465 Bytes
d0ef04f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
"""
Creates a Pytorch dataset to load the Pascal VOC & MS COCO datasets
"""

import numpy as np
import os
import pandas as pd
import torch
import random
from PIL import Image, ImageFile

import lightning as L
from torch.utils.data import Dataset, DataLoader
import config as config

from utils.utils import xywhn2xyxy, xyxy2xywhn

from utils.utils import (
    cells_to_bboxes,
    iou_width_height as iou,
    non_max_suppression as nms,
    plot_image,
)


ImageFile.LOAD_TRUNCATED_IMAGES = True


class YOLODataset(Dataset):
    def __init__(
        self,
        csv_file,
        img_dir,
        label_dir,
        anchors,
        image_size=416,
        S=[13, 26, 52],
        C=20,
        transform=None,
    ):
        self.annotations = pd.read_csv(csv_file)
        self.img_dir = img_dir
        self.label_dir = label_dir
        self.image_size = image_size
        self.mosaic_border = [image_size // 2, image_size // 2]
        self.transform = transform
        self.S = S
        self.anchors = torch.tensor(
            anchors[0] + anchors[1] + anchors[2]
        )  # for all 3 scales
        self.num_anchors = self.anchors.shape[0]
        self.num_anchors_per_scale = self.num_anchors // 3
        self.C = C
        self.ignore_iou_thresh = 0.5

    def __len__(self):
        return len(self.annotations)

    def load_mosaic(self, index):
        # YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
        labels4 = []
        s = self.image_size
        yc, xc = (
            int(random.uniform(x, 2 * s - x)) for x in self.mosaic_border
        )  # mosaic center x, y
        indices = [index] + random.choices(
            range(len(self)), k=3
        )  # 3 additional image indices
        random.shuffle(indices)
        for i, index in enumerate(indices):
            # Load image
            label_path = os.path.join(self.label_dir, self.annotations.iloc[index, 1])
            bboxes = np.roll(
                np.loadtxt(fname=label_path, delimiter=" ", ndmin=2), 4, axis=1
            ).tolist()
            img_path = os.path.join(self.img_dir, self.annotations.iloc[index, 0])
            img = np.array(Image.open(img_path).convert("RGB"))

            h, w = img.shape[0], img.shape[1]
            labels = np.array(bboxes)

            # place img in img4
            if i == 0:  # top left
                img4 = np.full(
                    (s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8
                )  # base image with 4 tiles
                x1a, y1a, x2a, y2a = (
                    max(xc - w, 0),
                    max(yc - h, 0),
                    xc,
                    yc,
                )  # xmin, ymin, xmax, ymax (large image)
                x1b, y1b, x2b, y2b = (
                    w - (x2a - x1a),
                    h - (y2a - y1a),
                    w,
                    h,
                )  # xmin, ymin, xmax, ymax (small image)
            elif i == 1:  # top right
                x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
                x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
            elif i == 2:  # bottom left
                x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
                x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
            elif i == 3:  # bottom right
                x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
                x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)

            img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b]  # img4[ymin:ymax, xmin:xmax]
            padw = x1a - x1b
            padh = y1a - y1b

            # Labels
            if labels.size:
                labels[:, :-1] = xywhn2xyxy(
                    labels[:, :-1], w, h, padw, padh
                )  # normalized xywh to pixel xyxy format
            labels4.append(labels)

        # Concat/clip labels
        labels4 = np.concatenate(labels4, 0)
        for x in (labels4[:, :-1],):
            np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective()
        # img4, labels4 = replicate(img4, labels4)  # replicate
        labels4[:, :-1] = xyxy2xywhn(labels4[:, :-1], 2 * s, 2 * s)
        labels4[:, :-1] = np.clip(labels4[:, :-1], 0, 1)
        labels4 = labels4[labels4[:, 2] > 0]
        labels4 = labels4[labels4[:, 3] > 0]
        return img4, labels4

    def __getitem__(self, index):
        if random.random() >= config.P_MOSAIC:
            image, bboxes = self.load_mosaic(index)
        else:
            label_path = os.path.join(self.label_dir, self.annotations.iloc[index, 1])
            bboxes = np.roll(
                np.loadtxt(fname=label_path, delimiter=" ", ndmin=2), 4, axis=1
            ).tolist()
            img_path = os.path.join(self.img_dir, self.annotations.iloc[index, 0])
            image = np.array(Image.open(img_path).convert("RGB"))

        if self.transform:
            augmentations = self.transform(image=image, bboxes=bboxes)
            image = augmentations["image"]
            bboxes = augmentations["bboxes"]

        # Below assumes 3 scale predictions (as paper) and same num of anchors per scale
        targets = [torch.zeros((self.num_anchors // 3, S, S, 6)) for S in self.S]
        for box in bboxes:
            iou_anchors = iou(torch.tensor(box[2:4]), self.anchors)
            anchor_indices = iou_anchors.argsort(descending=True, dim=0)
            x, y, width, height, class_label = box
            has_anchor = [False] * 3  # each scale should have one anchor
            for anchor_idx in anchor_indices:
                scale_idx = anchor_idx // self.num_anchors_per_scale
                anchor_on_scale = anchor_idx % self.num_anchors_per_scale
                S = self.S[scale_idx]
                i, j = int(S * y), int(S * x)  # which cell
                anchor_taken = targets[scale_idx][anchor_on_scale, i, j, 0]
                if not anchor_taken and not has_anchor[scale_idx]:
                    targets[scale_idx][anchor_on_scale, i, j, 0] = 1
                    x_cell, y_cell = S * x - j, S * y - i  # both between [0,1]
                    width_cell, height_cell = (
                        width * S,
                        height * S,
                    )  # can be greater than 1 since it's relative to cell
                    box_coordinates = torch.tensor(
                        [x_cell, y_cell, width_cell, height_cell]
                    )
                    targets[scale_idx][anchor_on_scale, i, j, 1:5] = box_coordinates
                    targets[scale_idx][anchor_on_scale, i, j, 5] = int(class_label)
                    has_anchor[scale_idx] = True

                elif (
                    not anchor_taken
                    and iou_anchors[anchor_idx] > self.ignore_iou_thresh
                ):
                    targets[scale_idx][
                        anchor_on_scale, i, j, 0
                    ] = -1  # ignore prediction

        return image, tuple(targets)


def test():
    anchors = config.ANCHORS

    transform = config.test_transforms

    dataset = YOLODataset(
        "COCO/train.csv",
        "COCO/images/images/",
        "COCO/labels/labels_new/",
        S=[13, 26, 52],
        anchors=anchors,
        transform=transform,
    )
    S = [13, 26, 52]
    scaled_anchors = torch.tensor(anchors) / (
        1 / torch.tensor(S).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2)
    )
    loader = DataLoader(dataset=dataset, batch_size=1, shuffle=True)
    for x, y in loader:
        boxes = []

        for i in range(y[0].shape[1]):
            anchor = scaled_anchors[i]
            print(anchor.shape)
            print(y[i].shape)
            boxes += cells_to_bboxes(
                y[i], is_preds=False, S=y[i].shape[2], anchors=anchor
            )[0]
        boxes = nms(boxes, iou_threshold=1, threshold=0.7, box_format="midpoint")
        print(boxes)
        plot_image(x[0].permute(1, 2, 0).to("cpu"), boxes)


class PascalDataModule(L.LightningDataModule):
    def __init__(
        self,
        train_csv_path=None,
        test_csv_path=None,
        batch_size=512,
        shuffle=True,
        num_workers=4,
    ) -> None:
        super().__init__()
        self.train_csv_path = train_csv_path
        self.test_csv_path = test_csv_path
        self.batch_size = batch_size
        self.shuffle = shuffle
        self.num_workers = num_workers
        self.IMAGE_SIZE = config.IMAGE_SIZE

    def prepare_data(self) -> None:
        pass

    def setup(self, stage=None):
        self.train_dataset = YOLODataset(
            self.train_csv_path,
            transform=config.train_transforms,
            S=[self.IMAGE_SIZE // 32, self.IMAGE_SIZE // 16, self.IMAGE_SIZE // 8],
            img_dir=config.IMG_DIR,
            label_dir=config.LABEL_DIR,
            anchors=config.ANCHORS,
        )

        self.val_dataset = YOLODataset(
            self.test_csv_path,
            transform=config.test_transforms,
            S=[self.IMAGE_SIZE // 32, self.IMAGE_SIZE // 16, self.IMAGE_SIZE // 8],
            img_dir=config.IMG_DIR,
            label_dir=config.LABEL_DIR,
            anchors=config.ANCHORS,
        )

        self.test_dataset = YOLODataset(
            self.test_csv_path,
            transform=config.test_transforms,
            S=[self.IMAGE_SIZE // 32, self.IMAGE_SIZE // 16, self.IMAGE_SIZE // 8],
            img_dir=config.IMG_DIR,
            label_dir=config.LABEL_DIR,
            anchors=config.ANCHORS,
        )

    def train_dataloader(self):
        return DataLoader(
            dataset=self.train_dataset,
            batch_size=config.BATCH_SIZE,
            num_workers=config.NUM_WORKERS,
            pin_memory=config.PIN_MEMORY,
            shuffle=True,
            drop_last=False,
        )

    def val_dataloader(self):
        return DataLoader(
            dataset=self.val_dataset,
            batch_size=config.BATCH_SIZE,
            num_workers=config.NUM_WORKERS,
            pin_memory=config.PIN_MEMORY,
            shuffle=False,
            drop_last=False,
        )

    def test_dataloader(self):
        return DataLoader(
            dataset=self.test_dataset,
            batch_size=config.BATCH_SIZE,
            num_workers=config.NUM_WORKERS,
            pin_memory=config.PIN_MEMORY,
            shuffle=False,
            drop_last=False,
        )