import streamlit as st import pickle import pandas as pd from sklearn.metrics.pairwise import cosine_similarity from sklearn.feature_extraction.text import CountVectorizer from imdb import IMDb similarity = pickle.load(open('cosine_sim.pkl', 'rb')) movie_dict = pickle.load(open('movie_dict.pkl', 'rb')) movies = pd.DataFrame(movie_dict) programme_list=movies['title'].to_list() imdb = IMDb() def get_movie_id(movie_title): """Get the IMDb ID of the movie using the IMDbPY library.""" try: movies = imdb.search_movie(movie_title) movie_id = movies[0].getID() # get the ID of the first search result return movie_id except Exception as e: st.error("Error: Failed to retrieve IMDb ID for the selected movie. Please try again with a different movie.") st.stop() def get_poster_url(imdb_id): """Get the URL of the poster image of the movie using the IMDbPY library.""" try: movie = imdb.get_movie(imdb_id) poster_url = movie['full-size cover url'] return poster_url except Exception as e: st.error("Error: Failed to retrieve poster URL for the selected movie. Please try again with a different movie.") st.stop() def recommend(movie): index = programme_list.index(movie) sim_score = list(enumerate(similarity[index])) #creates a list of tuples containing the similarity score and index between the input title and all other programmes in the dataset. #position 0 is the movie itself, thus exclude sim_score = sorted(sim_score, key= lambda x: x[1], reverse=True)[1:6] #sorts the list of tuples by similarity score in descending order. recommend_index = [i[0] for i in sim_score] rec_movie = movies['title'].iloc[recommend_index] rec_movie_ids = [get_movie_id(title) for title in rec_movie] return rec_movie, rec_movie_ids st.set_page_config(page_title='Netflix Movie Recommender System', page_icon=':clapper:', layout='wide') st.title('Movie Recommender System by Raushan Sharma') selected_movie_name = st.selectbox('Please select a Movie', sorted(movies['title'].values)) if st.button('Recommend Me'): try: recommendations, rec_movie_ids = recommend(selected_movie_name) # st.write(recommendations, rec_movie_ids) # st.write(recommendations[6195]) final_movie_names = [] for i, rec_id in zip(recommendations, rec_movie_ids): final_movie_names.append(i) # st.write(i) # poster_url = get_poster_url(rec_id) # st.image(poster_url) col1, col2, col3, col4, col5 = st.columns(5) cols = [col1, col2, col3, col4, col5] with col1: st.text(final_movie_names[0]) poster_url = get_poster_url(rec_movie_ids[0]) st.image(poster_url) with col2: st.text(final_movie_names[1]) poster_url = get_poster_url(rec_movie_ids[1]) st.image(poster_url) with col3: st.text(final_movie_names[2]) poster_url = get_poster_url(rec_movie_ids[2]) st.image(poster_url) with col4: st.text(final_movie_names[3]) poster_url = get_poster_url(rec_movie_ids[3]) st.image(poster_url) with col5: st.text(final_movie_names[4]) poster_url = get_poster_url(rec_movie_ids[4]) st.image(poster_url) except Exception as e: st.write('An error occurred while generating recommendations:', e)