ranveer_hack / app.py
vvinayakkk's picture
changed tp to app
9c4160d
import streamlit as st
import pandas as pd
import plotly.express as px
from astrapy import DataAPIClient
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import numpy as np
from openai import OpenAI
from typing import Dict, List
from dotenv import load_dotenv
import os
# Load environment variables
load_dotenv()
def initialize_client():
try:
token = os.getenv("ASTRA_DB_TOKEN")
endpoint = os.getenv("ASTRA_DB_ENDPOINT")
if not token or not endpoint:
raise ValueError("AstraDB token or endpoint not found in environment variables.")
client = DataAPIClient(token)
db = client.get_database_by_api_endpoint(endpoint)
return db
except Exception as e:
st.error(f"Error initializing AstraDB client: {e}")
return None
def fetch_collection_data(db, collection_name):
try:
collection = db[collection_name]
documents = collection.find({})
return list(documents)
except Exception as e:
st.error(f"Error fetching data from collection {collection_name}: {e}")
return None
@st.cache_data
def process_dataframe(data):
"""Cache the dataframe processing to prevent unnecessary recomputation"""
df = pd.DataFrame(data)
df = df.apply(pd.to_numeric, errors="ignore")
return df
def create_basic_visualization(df, viz_type, x_col, y_col, color_col=None):
"""Handle basic visualization types"""
if viz_type == "Line Chart":
fig = px.line(df, x=x_col, y=y_col, color=color_col, markers=True)
elif viz_type == "Bar Chart":
fig = px.bar(df, x=x_col, y=y_col, color=color_col, text=y_col)
elif viz_type == "Scatter Plot":
fig = px.scatter(df, x=x_col, y=y_col, color=color_col, size=y_col, hover_data=[color_col])
elif viz_type == "Box Plot":
fig = px.box(df, x=x_col, y=y_col, color=color_col, points="all")
return fig
def create_advanced_visualization(df, viz_type, x_col, y_col, color_col=None):
if viz_type in ["Line Chart", "Bar Chart", "Scatter Plot", "Box Plot"]:
fig = create_basic_visualization(df, viz_type, x_col, y_col, color_col)
elif viz_type == "Engagement Sunburst":
total_engagement = df['likes'] + df['shares'] + df['comments']
engagement_labels = pd.qcut(total_engagement, q=4, labels=['Low', 'Medium', 'High', 'Viral'])
temp_df = pd.DataFrame({
'engagement_level': engagement_labels,
'post_type': df['post_type'],
'likes': df['likes'],
'sentiment': df['avg_sentiment_score']
})
fig = px.sunburst(
temp_df,
path=['engagement_level', 'post_type'],
values='likes',
color='sentiment',
color_continuous_scale='RdYlBu',
title="Engagement Distribution by Post Type and Sentiment"
)
elif viz_type == "Sentiment Heat Calendar":
# Create dummy datetime for visualization
hour_data = []
days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']
for day in days:
for hour in range(24):
avg_sentiment = df['avg_sentiment_score'].mean() + np.random.normal(0, 0.1)
hour_data.append({
'day': day,
'hour': hour,
'sentiment': avg_sentiment
})
temp_df = pd.DataFrame(hour_data)
fig = px.density_heatmap(
temp_df,
x='day',
y='hour',
z='sentiment',
title="Sentiment Distribution by Day and Hour",
labels={'sentiment': 'Average Sentiment'},
color_continuous_scale="RdYlBu"
)
elif viz_type == "Engagement Spider":
metrics = ['likes', 'shares', 'comments']
df_norm = df[metrics].apply(lambda x: (x - x.min()) / (x.max() - x.min()))
fig = go.Figure()
for ptype in df['post_type'].unique():
values = df_norm[df['post_type'] == ptype].mean()
fig.add_trace(go.Scatterpolar(
r=values.tolist() + [values.iloc[0]],
theta=metrics + [metrics[0]],
name=ptype,
fill='toself'
))
fig.update_layout(
polar=dict(radialaxis=dict(visible=True, range=[0, 1])),
showlegend=True,
title="Engagement Pattern by Post Type"
)
elif viz_type == "Sentiment Flow":
# Group by post type and calculate rolling average
fig = go.Figure()
for ptype in df['post_type'].unique():
mask = df['post_type'] == ptype
sentiment_series = df[mask]['avg_sentiment_score']
rolling_avg = sentiment_series.rolling(window=min(7, len(sentiment_series))).mean()
fig.add_trace(go.Scatter(
x=list(range(len(rolling_avg))), # Use index instead of dates
y=rolling_avg,
name=ptype,
mode='lines',
fill='tonexty'
))
fig.update_layout(
title="Sentiment Flow by Post Type",
xaxis_title="Post Sequence",
yaxis_title="Average Sentiment"
)
elif viz_type == "Engagement Matrix":
corr_matrix = df[['likes', 'shares', 'comments', 'avg_sentiment_score']].corr()
fig = px.imshow(
corr_matrix,
color_continuous_scale='RdBu',
aspect='auto',
title="Engagement Metrics Correlation Matrix"
)
# Apply theme
fig.update_layout(
template="plotly_dark" if st.session_state.dark_mode else "plotly_white",
title_x=0.5,
font=dict(size=14),
margin=dict(l=20, r=20, t=50, b=20),
paper_bgcolor="#1e1e1e" if st.session_state.dark_mode else "#f9f9f9",
plot_bgcolor="#1e1e1e" if st.session_state.dark_mode else "#f9f9f9",
)
return fig
def initialize_openai():
"""Initialize OpenAI client"""
try:
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
return client
except Exception as e:
st.error(f"Error initializing OpenAI: {e}")
return None
def generate_prompt(metrics: Dict) -> str:
"""Generate a prompt for GPT based on the metrics"""
return f"""Analyze the following social media metrics and provide 3-5 clear, specific insights about post performance:
Post Type Metrics:
{metrics}
Please focus on:
1. Comparative performance between post types
2. Engagement patterns
3. Notable trends or anomalies
4. Actionable recommendations
Format your response in clear bullet points with percentage comparisons where relevant.
Keep each insight concise but specific, including numerical comparisons.
"""
def calculate_metrics(df: pd.DataFrame) -> Dict:
"""Calculate comprehensive metrics for GPT analysis"""
metrics = {}
# Calculate per post type metrics
for post_type in df['post_type'].unique():
post_data = df[df['post_type'] == post_type]
metrics[post_type] = {
'avg_likes': post_data['likes'].mean(),
'avg_shares': post_data['shares'].mean(),
'avg_comments': post_data['comments'].mean(),
'avg_sentiment': post_data['avg_sentiment_score'].mean(),
'engagement_rate': (post_data['likes'] + post_data['shares'] + post_data['comments']).mean(),
'post_count': len(post_data)
}
# Calculate comparative metrics
total_posts = len(df)
total_engagement = df['likes'].sum() + df['shares'].sum() + df['comments'].sum()
metrics['overall'] = {
'total_posts': total_posts,
'total_engagement': total_engagement,
'avg_sentiment_overall': df['avg_sentiment_score'].mean()
}
return metrics
def get_gpt_insights(client: OpenAI, metrics: Dict, user_query: str) -> str:
"""Get insights from GPT based on the metrics and user query"""
try:
prompt = generate_prompt(metrics) + f"\n\nUser Query: {user_query}"
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are a social media analytics expert. Provide clear, specific insights based on the data."},
{"role": "user", "content": prompt}
],
temperature=0.7,
max_tokens=500
)
# Extract and clean insights
insights_text = response.choices[0].message.content
return insights_text.strip()
except Exception as e:
return f"Error generating insights: {e}"
def main():
st.set_page_config(
page_title="Advanced Social Media Analytics Dashboard",
page_icon="πŸ“Š",
layout="wide",
)
openai_client = initialize_openai()
# Sidebar Settings
with st.sidebar:
st.title("Dashboard Settings")
if "dark_mode" not in st.session_state:
st.session_state.dark_mode = False
st.checkbox("Dark Mode", value=st.session_state.dark_mode, key="dark_mode")
st.write("### Data Source")
st.info("Initializing connection to AstraDB...")
db = initialize_client()
if not db:
return
collections = db.list_collection_names()
st.success("Connected to AstraDB")
selected_collection = st.selectbox("Select Collection", collections)
if selected_collection:
data = fetch_collection_data(db, selected_collection)
if data:
# Use cached data processing
df = process_dataframe(data)
# Create tabs for different analysis views
tab1, tab2, tab3 = st.tabs(["πŸ“Š Visualizations", "πŸ“ˆ Metrics", "πŸ€– AI Insights"])
with tab1:
col1, col2 = st.columns([1, 3])
with col1:
st.write("### Visualization Options")
viz_type = st.selectbox(
"Select Analysis Type",
[
"Engagement Sunburst",
"Sentiment Heat Calendar",
"Engagement Spider",
"Sentiment Flow",
"Engagement Matrix",
"Line Chart",
"Bar Chart",
"Scatter Plot",
"Box Plot"
]
)
if viz_type in ["Line Chart", "Bar Chart", "Scatter Plot", "Box Plot"]:
x_col = st.selectbox("Select X-axis", df.columns)
y_col = st.selectbox("Select Y-axis", df.select_dtypes(include=["number"]).columns)
color_col = st.selectbox("Select Color Column (Optional)", [None] + list(df.columns), index=0)
else:
x_col = y_col = color_col = None
with col2:
try:
fig = create_advanced_visualization(df, viz_type, x_col, y_col, color_col)
st.plotly_chart(fig, use_container_width=True)
except Exception as e:
st.error(f"Error creating visualization: {e}")
with tab2:
# Display key metrics and insights
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Average Engagement Rate",
f"{((df['likes'] + df['shares'] + df['comments']).mean() / len(df)):.2f}")
st.metric("Likes Mean", f"{df['likes'].mean():.2f}")
st.metric("Shares Mean", f"{df['shares'].mean():.2f}")
st.metric("Comments Mean", f"{df['comments'].mean():.2f}")
st.metric("Max Likes", f"{df['likes'].max():.2f}")
st.metric("Min Likes", f"{df['likes'].min():.2f}")
with col2:
st.metric("Sentiment Trend",
f"{df['avg_sentiment_score'].mean():.2f}",
f"{df['avg_sentiment_score'].std():.2f}")
st.metric("Max Shares", f"{df['shares'].max():.2f}")
st.metric("Min Shares", f"{df['shares'].min():.2f}")
st.metric("Max Comments", f"{df['comments'].max():.2f}")
st.metric("Min Comments", f"{df['comments'].min():.2f}")
st.metric("Median Sentiment", f"{df['avg_sentiment_score'].median():.2f}")
with col3:
top_type = df.groupby('post_type')['likes'].sum().idxmax()
st.metric("Most Engaging Post Type", top_type)
with st.expander("Detailed Post Overview"):
st.markdown("**Detailed metrics for each post (ID, likes, shares, comments, sentiment):**")
if 'post_id' in df.columns:
st.dataframe(df[['post_id','likes','shares','comments','avg_sentiment_score']])
else:
st.warning("No 'post_id' column found in the data.")
with tab3:
st.write("## AI Chatbot Insights")
if not openai_client:
st.error("OpenAI API not configured. Please add your API key to access AI insights.")
else:
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
user_input = st.text_input("Ask about data or insights:")
if st.button("Send"):
st.session_state.chat_history.append({"role": "user", "content": user_input})
# Use the modified get_gpt_insights function to generate response
metrics = calculate_metrics(df)
reply = get_gpt_insights(openai_client, metrics, user_input)
st.session_state.chat_history.append({"role": "assistant", "content": reply})
for msg in st.session_state.chat_history:
if msg["role"] == "user":
st.markdown(f"**You:** {msg['content']}")
else:
st.markdown(f"**Assistant:** {msg['content']}")
else:
st.error("Failed to fetch data from the selected collection.")
else:
st.error("Please select a valid collection.")
if __name__ == "__main__":
main()