# This file is adapted from https://github.com/lllyasviel/ControlNet/blob/f4748e3630d8141d7765e2bd9b1e348f47847707/gradio_hough2image.py # The original license file is LICENSE.ControlNet in this repo. import gradio as gr def create_demo(process, max_images=12, default_num_images=3): with gr.Blocks() as demo: with gr.Row(): gr.Markdown('### Use a photo of your room and reimagine it with different styles') with gr.Row(): with gr.Column(): input_image = gr.Image(source='upload', type='numpy') prompt = gr.Textbox(label='Prompt') run_button = gr.Button(label='Run') with gr.Accordion('Advanced options', open=False): num_samples = gr.Slider(label='Images', minimum=1, maximum=max_images, value=default_num_images, step=1) image_resolution = gr.Slider(label='Image Resolution', minimum=256, maximum=512, value=512, step=256) detect_resolution = gr.Slider(label='Hough Resolution', minimum=128, maximum=512, value=512, step=1) mlsd_value_threshold = gr.Slider( label='Hough value threshold (MLSD)', minimum=0.01, maximum=2.0, value=0.1, step=0.01) mlsd_distance_threshold = gr.Slider( label='Hough distance threshold (MLSD)', minimum=0.01, maximum=20.0, value=0.1, step=0.01) num_steps = gr.Slider(label='Steps', minimum=1, maximum=100, value=20, step=1) guidance_scale = gr.Slider(label='Guidance Scale', minimum=0.1, maximum=30.0, value=9.0, step=0.1) seed = gr.Slider(label='Seed', minimum=-1, maximum=2147483647, step=1, randomize=True) a_prompt = gr.Textbox( label='Added Prompt', value='best quality, extremely detailed, photo from Pinterest, interior, cinematic photo, ultra-detailed, ultra-realistic, award-winning') n_prompt = gr.Textbox( label='Negative Prompt', value= 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' ) with gr.Column(): result = gr.Gallery(label='Output', show_label=False, elem_id='gallery').style(grid=2, height='auto') inputs = [ input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, num_steps, guidance_scale, seed, mlsd_value_threshold, mlsd_distance_threshold, ] prompt.submit(fn=process, inputs=inputs, outputs=result) run_button.click(fn=process, inputs=inputs, outputs=result, api_name='hough') return demo