import streamlit as st from langchain import OpenAI, PromptTemplate, LLMChain from langchain.text_splitter import CharacterTextSplitter from langchain.chains.mapreduce import MapReduceChain from langchain.prompts import PromptTemplate from langchain.chat_models import AzureChatOpenAI from langchain.chains.summarize import load_summarize_chain from langchain.chains import AnalyzeDocumentChain from PyPDF2 import PdfReader from langchain.document_loaders import TextLoader from langchain.indexes import VectorstoreIndexCreator from langchain.document_loaders import PyPDFLoader import os import openai from PIL import Image import os os.environ["OPENAI_API_TYPE"] = "azure" os.environ["OPENAI_API_VERSION"] = "2023-03-15-preview" openai.api_type = "azure" openai.api_base = "https://embeddinguseopenai.openai.azure.com/" openai.api_version = "2023-03-15-preview" openai.api_key = os.environ["OPENAI_API_KEY"] image = Image.open('Wipro logo.png') st.image(image) st.title("Ask anything on CSRD or Wipro sustainability report") st.subheader("Type your question here ") yourquestion = st.text_input('Your topic', 'What is Wipro doing on biodiversity?') st.write('Your input is ', yourquestion) if st.button("Ask Questions "): template = """ You are an AI assistant. {concept} """ response = openai.ChatCompletion.create( engine="gpt-35-turbo", messages = [{"role":"system","content":"You are an AI assistant that helps people find information."},{"role":"user","content":yourquestion}], temperature=0, max_tokens=800, top_p=1, frequency_penalty=0, presence_penalty=0, stop=None) # Run the chain only specifying the input variable. st.write(response)