Rajagopal commited on
Commit
a05ca56
·
1 Parent(s): 13b193b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -31
app.py CHANGED
@@ -17,52 +17,50 @@ import time
17
  image = Image.open('Wipro logo.png')
18
  st.image(image)
19
 
20
- st.title("Wipro Impact | CSRD | Advisor")
21
 
22
- st.header("Enable clients to prepare for CSRD.. ")
23
 
 
24
 
25
- genre = st.radio(
26
- "Choose a CSRD focus area for AI question answering",
27
- ('E1-Climate Change', 'E4-Biodiversity and ecosystem', 'S1-Own Workforce'), index=0)
28
 
29
- url = "https://www.efrag.org/Assets/Download?assetUrl=%2Fsites%2Fwebpublishing%2FSiteAssets%2F13%2520Draft%2520ESRS%2520S1%2520Own%2520workforce%2520November%25202022.pdf"
30
 
31
- if genre == 'E1-Climate Change':
32
- url = "https://www.efrag.org/Assets/Download?assetUrl=%2Fsites%2Fwebpublishing%2FSiteAssets%2F08%2520Draft%2520ESRS%2520E1%2520Climate%2520Change%2520November%25202022.pdf"
33
- samplequestions = ["What are the climate related indicators?", "List all the disclosure requirments listed in page 3?", "Policies related to climate change mitigation and adaptation?",
34
- "What should the company disclose regarding Actions and resources in relation to climate change policies?" , "How should the GHG emission reduction targets be reported?" ,
35
- "Total energy consumption from non-renewable sources for high climate impact sectors should be disaggregated as ?",
36
- "Total energy consumption from renewable sources should be disaggregated as ?" ,
37
- "What should be disclosed on GHG removals and GHG mitigation projects financed through carbon credits ?" ,
38
- "Is it wise to invest on carbon credits? ",
39
- "What is Climate change adaptation? ", "What are Decarbonisation levers?" ]
 
 
 
 
40
 
41
- if genre == 'E4-Biodiversity and ecosystem':
42
- url = "https://www.efrag.org/Assets/Download?assetUrl=%2Fsites%2Fwebpublishing%2FSiteAssets%2F11%2520Draft%2520ESRS%2520E4%2520Biodiversity%2520and%2520ecosystems%2520November%25202022.pdf"
43
- samplequestions = ["What are the Biodiversity related indicators?", "List all the disclosure requirments listed in page 3?"]
44
- if genre == 'S1-Own Workforce':
45
- url = "https://www.efrag.org/Assets/Download?assetUrl=%2Fsites%2Fwebpublishing%2FSiteAssets%2F13%2520Draft%2520ESRS%2520S1%2520Own%2520workforce%2520November%25202022.pdf"
46
- samplequestions = ["What are the social related indicators?", "List all the disclosure requirments listed in page 3?"]
47
 
48
 
49
 
50
 
51
- sampleselectedquestion = st.selectbox(
52
- 'Just ask your question or start with a one of these example questions...', samplequestions )
53
-
54
- st.write(" :green[ Ask any thing on your mind...just type your question here...]")
55
- yourquestion = st.text_input('Your question', sampleselectedquestion)
56
- st.write('Your typed .. ', yourquestion)
57
-
58
 
 
 
 
59
 
60
 
61
  os.environ['OPENAI_API_TYPE'] = 'azure'
62
  os.environ['OPENAI_API_VERSION'] = '2023-03-15-preview'
63
 
64
- llmgpt3 = AzureOpenAI( deployment_name="testdavanci", model_name="text-davinci-003" )
65
- chain = load_qa_chain(llm=llmgpt3, chain_type="map_reduce")
 
 
 
 
 
66
 
67
  aimethod = st.radio(
68
  "Choose a AI brain or document comprehension method",
@@ -74,7 +72,7 @@ if aimethod == '2 minutes AI method map_reduce':
74
  if aimethod == '4 minutes AI method refine':
75
  mychain_type = "refine"
76
 
77
- chain = load_qa_chain(llm=llmgpt3, chain_type=mychain_type)
78
 
79
 
80
  loader1 = PyPDFLoader(url)
 
17
  image = Image.open('Wipro logo.png')
18
  st.image(image)
19
 
20
+ st.title("Wipro impact | The inquisitive sustainability leader: Learn some of the best practices in sustainability from success stories of leading companies.. ")
21
 
 
22
 
23
+ st.header("Welcome!. Today, What company's sustainability story is inspiring you ?.. ")
24
 
 
 
 
25
 
26
+ myurl = st.text_input("Give the URL to find a sustainability or annual report", "Type URL of any company PDF document here")
27
 
28
+ if st.button("Load this report "):
29
+ loader1 = PyPDFLoader(myurl)
30
+
31
+ index = VectorstoreIndexCreator(
32
+ # split the documents into chunks
33
+ text_splitter=CharacterTextSplitter(chunk_size=1000, chunk_overlap=0),
34
+ # select which embeddings we want to use
35
+ embedding=langchainembeddings,
36
+ # use Chroma as the vectorestore to index and search embeddings
37
+ vectorstore_cls=Chroma
38
+ ).from_loaders([loader1])
39
+
40
+ st.write("loaded")
41
 
 
 
 
 
 
 
42
 
43
 
44
 
45
 
46
+ yourquestion = st.text_input('Ask your question on best practices', 'What is Wipro plans for Biodiversity in 2024?')
47
+ st.write('Your input is ', yourquestion)
 
 
 
 
 
48
 
49
+ aimethod = st.radio(
50
+ "Choose a AI brain",
51
+ ('GPT3', 'GPT3.5' ), index=1)
52
 
53
 
54
  os.environ['OPENAI_API_TYPE'] = 'azure'
55
  os.environ['OPENAI_API_VERSION'] = '2023-03-15-preview'
56
 
57
+ #llmgpt3 = AzureOpenAI( deployment_name="testdavanci", model_name="text-davinci-003" )
58
+ llmchatgpt = AzureOpenAI( deployment_name="esujnand", model_name="gpt-35-turbo" )
59
+
60
+ if st.button("Ask Best practices "):
61
+ answer = index.query(llm=llmchatgpt, question=query, chain_type="map_reduce")
62
+ st.write(answer)
63
+
64
 
65
  aimethod = st.radio(
66
  "Choose a AI brain or document comprehension method",
 
72
  if aimethod == '4 minutes AI method refine':
73
  mychain_type = "refine"
74
 
75
+
76
 
77
 
78
  loader1 = PyPDFLoader(url)