Rajagopal commited on
Commit
63ea8f9
·
1 Parent(s): 3ea59ed

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -20
app.py CHANGED
@@ -14,6 +14,28 @@ import streamlit as st
14
  from PIL import Image
15
  import time
16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  image = Image.open('Wipro logo.png')
18
  st.image(image)
19
 
@@ -40,26 +62,8 @@ with st.form("my_form"):
40
  submitted = st.form_submit_button("Ask question")
41
  if submitted:
42
  st.write("AI is looking for the answer...It will take atleast 2 mintutes... Answers will appear below....")
 
 
43
 
44
- if myurl:
45
- index = None
46
- loader1 = PyPDFLoader(myurl)
47
- langchainembeddings = OpenAIEmbeddings(deployment="textembedding", chunk_size=1)
48
 
49
- index = VectorstoreIndexCreator(
50
- # split the documents into chunks
51
- text_splitter=CharacterTextSplitter(chunk_size=1000, chunk_overlap=0),
52
- # select which embeddings we want to use
53
- embedding=langchainembeddings,
54
- # use Chroma as the vectorestore to index and search embeddings
55
- vectorstore_cls=Chroma
56
- ).from_loaders([loader1])
57
-
58
- st.write("indexed PDF...AI finding answer....please wait")
59
-
60
-
61
-
62
- if yourquestion:
63
- answer = index.query(llm=llmgpt3, question=yourquestion, chain_type="map_reduce")
64
- st.subheader(answer)
65
 
 
14
  from PIL import Image
15
  import time
16
 
17
+ def findanswer(Nand_url, Nand_question):
18
+ if True:
19
+ if Nand_url:
20
+ index = None
21
+ loader1 = PyPDFLoader(Nand_url)
22
+ langchainembeddings = OpenAIEmbeddings(deployment="textembedding", chunk_size=1)
23
+
24
+ index = VectorstoreIndexCreator(
25
+ # split the documents into chunks
26
+ text_splitter=CharacterTextSplitter(chunk_size=1000, chunk_overlap=0),
27
+ # select which embeddings we want to use
28
+ embedding=langchainembeddings,
29
+ # use Chroma as the vectorestore to index and search embeddings
30
+ vectorstore_cls=Chroma
31
+ ).from_loaders([loader1])
32
+ # st.write("indexed PDF...AI finding answer....please wait")
33
+ if Nand_question:
34
+ answer = index.query(llm=llmgpt3, question=yourquestion, chain_type="map_reduce")
35
+ return answer
36
+
37
+
38
+
39
  image = Image.open('Wipro logo.png')
40
  st.image(image)
41
 
 
62
  submitted = st.form_submit_button("Ask question")
63
  if submitted:
64
  st.write("AI is looking for the answer...It will take atleast 2 mintutes... Answers will appear below....")
65
+ Nandanswer = findanswer(myurl, yourquestion )
66
+ st.write(Nandanswer)
67
 
 
 
 
 
68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69