import gradio as gr from transformers import pipeline pipe = pipeline("summarization", model="RajSang/pegasus-sports-titles") def sportyify(article,length_penalty=0.6,diversity_penalty=2.0): gen_kwargs = {"length_penalty":length_penalty,"num_beams":4, "num_return_sequences": 4,"num_beam_groups":4,"diversity_penalty":float(diversity_penalty)} titles=[i["summary_text"]+'\n\n' for i in pipe(article, **gen_kwargs,truncation=True)] returnable='' for i,title in enumerate(titles): returnable+='Title '+str(i+1)+' :\n\n'+title return returnable article = "
" examples = [["""After Pat Cummins side bowled England out for 188 on day two, Australia struggled once again early on in their second innings, with David Warner, Marnus Labuschagne and Usman Khawaja all falling in the final minutes of day two. But Steve Smith managed to steady the Australia ship and is currently leading Australia to an overall lead past 150, with the Hobart hosts looking to end their exceptional series in style.""", 0.6, 2.0]] iface = gr.Interface(fn=sportyify, inputs=[gr.inputs.Textbox(lines=15, placeholder="Paste Article Text Here"), gr.inputs.Slider(minimum=0.1,maximum=0.6,default=0.6,step=0.1), gr.inputs.Slider(minimum=1.0,maximum=3.0,default=2.0,step=1.0) ], outputs="text", title="SPORT-Y Titles", description="Decreasing the length penalty ranks shorter titles higher.
Increasing the diversity penalty creates unique titles.
Read more here
", article=article, examples=examples, allow_flagging='never') iface.launch(enable_queue=True)