Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,134 +1,146 @@
|
|
1 |
import gradio as gr
|
2 |
import joblib
|
3 |
import numpy as np
|
|
|
|
|
|
|
4 |
|
5 |
# Load the saved models and pipelines
|
6 |
anxiety_model = joblib.load('Anxiety_best_model.pkl')
|
7 |
anxiety_pipeline = joblib.load('Anxiety_best_pipeline.pkl')
|
8 |
-
|
9 |
depression_model = joblib.load('Depression_best_model.pkl')
|
10 |
depression_pipeline = joblib.load('Depression_best_pipeline.pkl')
|
11 |
-
|
12 |
insomnia_model = joblib.load('Insomnia_best_model.pkl')
|
13 |
insomnia_pipeline = joblib.load('Insomnia_best_pipeline.pkl')
|
14 |
-
|
15 |
ocd_model = joblib.load('OCD_best_model.pkl')
|
16 |
ocd_pipeline = joblib.load('OCD_best_pipeline.pkl')
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
# Define the prediction functions
|
19 |
-
def
|
20 |
-
|
21 |
-
inputs_scaled =
|
22 |
-
prediction =
|
23 |
-
return prediction[0]
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
#
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
examples=[[18, 3, 0, 1, 0, 156]]
|
62 |
-
)
|
63 |
-
depression_iface = gr.Interface(
|
64 |
-
fn=Depression_predict,
|
65 |
-
inputs=[
|
66 |
-
gr.Number(label="Age"),
|
67 |
-
gr.Number(label="Hours per day"),
|
68 |
-
gr.Number(label="Insomnia"),
|
69 |
-
gr.Number(label="Anxiety"),
|
70 |
-
gr.Number(label="OCD"),
|
71 |
-
gr.Number(label="BPM")
|
72 |
-
],
|
73 |
-
outputs=[
|
74 |
-
gr.Number(label="Predicted Value"),
|
75 |
-
gr.Textbox(label="Prediction Description")
|
76 |
-
],
|
77 |
-
title="Music & Mental Health Predictor - Depression",
|
78 |
-
description="Enter 5 numeric values to get a prediction.",
|
79 |
-
theme=gr.themes.Soft(),
|
80 |
-
examples=[[18, 3, 0, 1, 0, 156]]
|
81 |
-
)
|
82 |
-
insomnia_iface = gr.Interface(
|
83 |
-
fn=Insomnia_predict,
|
84 |
-
inputs=[
|
85 |
-
gr.Number(label="Age"),
|
86 |
-
gr.Number(label="Hours per day"),
|
87 |
-
gr.Number(label="Depression"),
|
88 |
-
gr.Number(label="Anxiety"),
|
89 |
-
gr.Number(label="OCD"),
|
90 |
-
gr.Number(label="BPM")
|
91 |
-
],
|
92 |
-
outputs=[
|
93 |
-
gr.Number(label="Predicted Value"),
|
94 |
-
gr.Textbox(label="Prediction Description")
|
95 |
-
],
|
96 |
-
title="Music & Mental Health Predictor - Insomnia",
|
97 |
-
description="Enter 5 numeric values to get a prediction.",
|
98 |
-
theme=gr.themes.Soft(),
|
99 |
-
examples=[[18, 3, 0, 1, 0, 156]]
|
100 |
-
)
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
description="Enter 5 numeric values to get a prediction.",
|
118 |
-
theme=gr.themes.Soft(),
|
119 |
-
examples=[[18, 3, 0, 1, 0, 156]]
|
120 |
-
)
|
121 |
|
122 |
-
#
|
123 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
124 |
-
|
125 |
-
|
126 |
-
with gr.
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
# Launch the interface
|
134 |
demo.launch(debug=True)
|
|
|
1 |
import gradio as gr
|
2 |
import joblib
|
3 |
import numpy as np
|
4 |
+
import spotipy
|
5 |
+
from spotipy.oauth2 import SpotifyClientCredentials
|
6 |
+
import random
|
7 |
|
8 |
# Load the saved models and pipelines
|
9 |
anxiety_model = joblib.load('Anxiety_best_model.pkl')
|
10 |
anxiety_pipeline = joblib.load('Anxiety_best_pipeline.pkl')
|
|
|
11 |
depression_model = joblib.load('Depression_best_model.pkl')
|
12 |
depression_pipeline = joblib.load('Depression_best_pipeline.pkl')
|
|
|
13 |
insomnia_model = joblib.load('Insomnia_best_model.pkl')
|
14 |
insomnia_pipeline = joblib.load('Insomnia_best_pipeline.pkl')
|
|
|
15 |
ocd_model = joblib.load('OCD_best_model.pkl')
|
16 |
ocd_pipeline = joblib.load('OCD_best_pipeline.pkl')
|
17 |
|
18 |
+
# Spotify API credentials
|
19 |
+
SPOTIPY_CLIENT_ID = '79d5de7b9bec45c4bc2ae857e29d89e4'
|
20 |
+
SPOTIPY_CLIENT_SECRET = '410907e455a24118810bd89ee99d6f68'
|
21 |
+
|
22 |
+
# Initialize Spotify client
|
23 |
+
sp = spotipy.Spotify(auth_manager=SpotifyClientCredentials(client_id=SPOTIPY_CLIENT_ID,
|
24 |
+
client_secret=SPOTIPY_CLIENT_SECRET))
|
25 |
+
|
26 |
# Define the prediction functions
|
27 |
+
def predict(model, pipeline, inputs):
|
28 |
+
inputs_array = np.array(inputs).reshape(1, -1)
|
29 |
+
inputs_scaled = pipeline.transform(inputs_array)
|
30 |
+
prediction = model.predict(inputs_scaled)
|
31 |
+
return prediction[0]
|
32 |
|
33 |
+
# Function to recommend songs based on the condition and prediction
|
34 |
+
def recommend_songs(condition, prediction):
|
35 |
+
mood_keywords = {
|
36 |
+
"Anxiety": ["relaxing", "calming", "soothing"],
|
37 |
+
"Depression": ["uplifting", "motivational", "cheerful"],
|
38 |
+
"Insomnia": ["sleep", "ambient", "white noise"],
|
39 |
+
"OCD": ["focus", "mindfulness", "meditation"]
|
40 |
+
}
|
41 |
+
|
42 |
+
# Select a random keyword based on the condition
|
43 |
+
keyword = random.choice(mood_keywords[condition])
|
44 |
+
|
45 |
+
# Adjust the search query based on the prediction value
|
46 |
+
if prediction < 3:
|
47 |
+
query = f"mild {keyword} music"
|
48 |
+
elif prediction < 6:
|
49 |
+
query = f"moderate {keyword} music"
|
50 |
+
else:
|
51 |
+
query = f"intense {keyword} music"
|
52 |
|
53 |
+
results = sp.search(q=query, type='track', limit=5)
|
54 |
+
songs = []
|
55 |
+
for item in results['tracks']['items']:
|
56 |
+
song = {
|
57 |
+
'name': item['name'],
|
58 |
+
'artist': item['artists'][0]['name'],
|
59 |
+
'album': item['album']['name'],
|
60 |
+
'image_url': item['album']['images'][0]['url'] if item['album']['images'] else None,
|
61 |
+
'preview_url': item['preview_url']
|
62 |
+
}
|
63 |
+
songs.append(song)
|
64 |
+
return songs
|
65 |
|
66 |
+
# Define the main prediction and recommendation function
|
67 |
+
def predict_and_recommend(condition, *inputs):
|
68 |
+
if condition == "Anxiety":
|
69 |
+
prediction = predict(anxiety_model, anxiety_pipeline, inputs)
|
70 |
+
elif condition == "Depression":
|
71 |
+
prediction = predict(depression_model, depression_pipeline, inputs)
|
72 |
+
elif condition == "Insomnia":
|
73 |
+
prediction = predict(insomnia_model, insomnia_pipeline, inputs)
|
74 |
+
else: # OCD
|
75 |
+
prediction = predict(ocd_model, ocd_pipeline, inputs)
|
76 |
+
|
77 |
+
songs = recommend_songs(condition, prediction)
|
78 |
+
|
79 |
+
return prediction, f"The predicted {condition} level is {prediction:.2f}", songs
|
80 |
|
81 |
+
# Function to create HTML for song recommendations
|
82 |
+
def create_song_html(songs):
|
83 |
+
if not songs or not isinstance(songs, list):
|
84 |
+
return "No songs to display"
|
85 |
+
|
86 |
+
html = "<div style='display: flex; flex-wrap: wrap; justify-content: space-around;'>"
|
87 |
+
for song in songs:
|
88 |
+
html += f"""
|
89 |
+
<div style='width: 200px; margin: 10px; text-align: center;'>
|
90 |
+
<img src='{song.get('image_url', '')}' style='width: 150px; height: 150px; object-fit: cover;'>
|
91 |
+
<h3>{song.get('name', 'Unknown')}</h3>
|
92 |
+
<p>{song.get('artist', 'Unknown Artist')}</p>
|
93 |
+
<p>{song.get('album', 'Unknown Album')}</p>
|
94 |
+
{f'<audio controls src="{song.get("preview_url", "")}"></audio>' if song.get('preview_url') else 'No preview available'}
|
95 |
+
</div>
|
96 |
+
"""
|
97 |
+
html += "</div>"
|
98 |
+
return html
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
+
# Define the main prediction and recommendation function
|
101 |
+
def predict_and_recommend(condition, *inputs):
|
102 |
+
if condition == "Anxiety":
|
103 |
+
prediction = predict(anxiety_model, anxiety_pipeline, inputs)
|
104 |
+
elif condition == "Depression":
|
105 |
+
prediction = predict(depression_model, depression_pipeline, inputs)
|
106 |
+
elif condition == "Insomnia":
|
107 |
+
prediction = predict(insomnia_model, insomnia_pipeline, inputs)
|
108 |
+
else: # OCD
|
109 |
+
prediction = predict(ocd_model, ocd_pipeline, inputs)
|
110 |
+
|
111 |
+
songs = recommend_songs(condition, prediction)
|
112 |
+
song_html = create_song_html(songs)
|
113 |
+
|
114 |
+
return prediction, f"The predicted {condition} level is {prediction:.2f}", song_html
|
|
|
|
|
|
|
|
|
115 |
|
116 |
+
# Define the Gradio interface
|
117 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
118 |
+
gr.Markdown("# Music & Mental Health Predictor")
|
119 |
+
|
120 |
+
with gr.Row():
|
121 |
+
condition = gr.Radio(["Anxiety", "Depression", "Insomnia", "OCD"], label="Select Condition")
|
122 |
+
|
123 |
+
with gr.Row():
|
124 |
+
with gr.Column():
|
125 |
+
age = gr.Number(label="Age")
|
126 |
+
hours_per_day = gr.Number(label="Hours per day listening to music")
|
127 |
+
depression = gr.Number(label="Depression level (0-10)")
|
128 |
+
insomnia = gr.Number(label="Insomnia level (0-10)")
|
129 |
+
ocd = gr.Number(label="OCD level (0-10)")
|
130 |
+
bpm = gr.Number(label="Preferred BPM")
|
131 |
+
|
132 |
+
with gr.Column():
|
133 |
+
prediction_value = gr.Number(label="Predicted Value")
|
134 |
+
prediction_text = gr.Textbox(label="Prediction Description")
|
135 |
+
song_recommendations = gr.HTML(label="Recommended Songs")
|
136 |
+
|
137 |
+
predict_btn = gr.Button("Predict and Recommend Songs")
|
138 |
+
|
139 |
+
predict_btn.click(
|
140 |
+
fn=predict_and_recommend,
|
141 |
+
inputs=[condition, age, hours_per_day, depression, insomnia, ocd, bpm],
|
142 |
+
outputs=[prediction_value, prediction_text, song_recommendations],
|
143 |
+
)
|
144 |
|
145 |
# Launch the interface
|
146 |
demo.launch(debug=True)
|